
Canonical Algebraic Generators

in Automata Learning

Stefan Jens Zetzsche

A dissertation submitted in partial fulfillment of the

requirements for the degree of

Doctor of Philosophy

at

University College London

(UCL)

Department of Computer Science

August, 2023

2

Declaration

I, Stefan Jens Zetzsche confirm that the work presented in this thesis is my own.

Where information has been derived from other sources, I confirm that this has been

indicated in the thesis.

3

4

Abstract

Many methods for the verification of complex computer systems require the existence

of a tractable mathematical abstraction of the system, often in the form of an au-

tomaton. In reality, however, such a model is hard to come up with, in particular

manually. Automata learning is a technique that can automatically infer an automa-

ton model from a system – by observing its behaviour. The majority of automata

learning algorithms is based on the so-called L∗ algorithm. The acceptor learned by L∗

has an important property: it is canonical, in the sense that, it is, up to isomorphism,

the unique deterministic finite automaton of minimal size accepting a given regu-

lar language. Establishing a similar result for other classes of acceptors, often with

side-effects, is of great practical importance. Non-deterministic finite automata, for

instance, can be exponentially more succinct than deterministic ones, allowing verifi-

cation to scale. Unfortunately, identifying a canonical size-minimal non-deterministic

acceptor of a given regular language is in general not possible: it can happen that a

regular language is accepted by two non-isomorphic non-deterministic finite automata

of minimal size. In particular, it thus is unclear which one of the automata should

be targeted by a learning algorithm. In this thesis, we further explore the issue and

identify (sub-)classes of acceptors that admit canonical size-minimal representatives.

In more detail, the contributions of this thesis are three-fold.

First, we expand the automata (learning) theory of Guarded Kleene Algebra with

Tests (GKAT), an efficiently decidable logic expressive enough to model simple imper-

ative programs. In particular, we present GL∗, an algorithm that learns the unique

size-minimal GKAT automaton for a given deterministic language, and prove that

GL∗ is more efficient than an existing variation of L∗. We implement both algorithms

in OCaml, and compare them on example programs.

5

6

Second, we present a category-theoretical framework based on generators, bial-

gebras, and distributive laws, which identifies, for a wide class of automata with

side-effects in a monad, canonical target models for automata learning. Apart from

recovering examples from the literature, we discover a new canonical acceptor of reg-

ular languages, and present a unifying minimality result.

Finally, we show that the construction underlying our framework is an instance of a

more general theory. First, we see that deriving a minimal bialgebra from a minimal

coalgebra can be realized by applying a monad on a category of subobjects with

respect to an epi-mono factorisation system. Second, we explore the abstract theory

of generators and bases for algebras over a monad: we discuss bases for bialgebras, the

product of bases, generalise the representation theory of linear maps, and compare

our ideas to a coalgebra-based approach.

Impact

Outside Academia As hardware and software systems continue to grow in com-

plexity, methods for their verification become increasingly important. Classical model

checking approaches to verification require the prior existence of a rich model of the

system of interest, able to express all its relevant behaviour. In reality such a model

is often unavailable, for instance, when the system comes in the form of a black-box

with no access to the source code, or the system is simply too complex for manual

processing. The black-box automata learning technique addresses this issue and has

been successfully applied in a wide range of use cases, from finding bugs in network

protocols [48], reverse engineering smartcard reader for internet banking [42], and

other industrial applications [61]. A comprehensive survey can be found in [153].

One of the bottle-necks for learning algorithms in an industrial setting is scalabil-

ity. Identifying canonical target acceptors of minimal size is thus of great practical

importance. As it happens, establishing uniqueness and minimality results for classes

of acceptors with side-effects, which are often exponentially more succinct than their

deterministic counterparts, can be surprisingly difficult [49]. In this thesis, we provide

a general categorical framework that incorporates existing constructions of canoni-

cal minimal automata with side-effects and unveils new ones, and present a unifying

minimality result. Another variable that impacts scalability is the maximum number

of observation and equivalence queries an algorithm requires to learn a model. In

this thesis, we present GL∗, which deduces automata representations of simple imper-

ative programs, and generally requires less queries than existing approaches. This is

particularly interesting in view of potential applications to network verification [143].

7

8

Inside Academia The lack of a canonical target acceptor when learning non-

deterministic models has lead to a number of independent approaches, for different

variants of non-determinism [28, 53]. More recently, there have been efforts to give

a unifying perspective on those approaches. In this thesis, we present a category-

theoretic framework that generalises ideas of Van Heerdt [63, 64, 66], the notion of

a scoop by Arbib and Manes [19], and the universal-algebraic treatment of Myers

et al. [119]. We present the first general algorithm for the construction of succinct

automata and give a unifying minimality result. In particular, we discover a pre-

viously unknown canonical acceptor of regular languages. By using bialgebras and

distributive laws, we are able to clarify the central role of algebraic generators and

bases, which has previously been underappreciated. We further explore this direction

by developing the independent abstract theory of generators and bases. We expect

those results to be also valuable outside of the automata learning community.

Guarded Kleene Algebra with Tests is a variation of Kleene Algebra with Tests

that one obtains by restricting the union and iteration operations to guarded versions

[142]. Recently, this variation has become the subject of increasing interest [135].

We contribute to the development of its automata (learning) theory, for example, by

establishing the existence of a unique size-minimal acceptor. Our treatment leads to

numerous directions that could be further explored; for instance improving efficiency

through more compact data-structures, or an adaption to a probabilistic extension.

The results of this thesis have been published at the 37th and 38th International

Conference on Mathematical Foundations of Programming Semantics [161, 160], and

at the 10th Conference on Algebra and Coalgebra in Computer Science [159]. Addi-

tionally, some of the results have been presented at the 8th Symposium on Composi-

tional Structures [161].

Acknowledgements

First of all, my thanks go to my two supervisors, Alexandra and Matteo. I am grateful

for you giving me the chance to pursue a PhD in the first place. Studying abroad, in

London, has been something I have always wanted to do. At all times, you two have

been patient and encouraging. Thank you for supporting and guiding me through

good and bad times. Alexandra, I have learnt a lot from you. Your sharp intellect,

good heart, and work ethic will stay with me. I will also remember your delicious

cooking. Matteo, you have always had the right advice for me. Your writing has been

as beautiful and simple as the food of Italy. I will miss you two.

I would also like to thank all the peers that have taken the time to review my work

and provide valuable feedback. Over time, I received many insightful comments on my

submissions, often from anonymous reviewers. My coauthors Alex, Gerco, and Mat-

teo have given me fruitful guidance during numerous discussions. I am particularly

grateful to Mehrnoosh and Stefan, for agreeing to be my examiners, and for studying

my thesis in thorough detail. I am also thankful to Fabio and James, who chaired

my transfer and first year viva, respectively. Both experiences were challenging, but

helped me a lot with progressing towards an independent researcher.

I am very fortunate to have been a part of the Programming Principles, Logic,

and Verification group. All the numerous seminars, reading groups, and informal

conversations were a welcome change to my daily routine. Over the years I shared

my office with many inspiring people. My first desk has been in a room with Gerco,

Jana, Paul, and Tobias, all of which are greatly missed. Later, I moved to the

basement, which I shared with Jas, Leo, Linpeng, Louis, Mateo, Robin, Tiago, Will,

and Wojciech. The collaborative spirit in our department allowed me to converse

with researchers of all experiences. Thank you, Bas, Benjamin, Christoph, Diana,

9

10

Fredrik, Jurriaan, Lachlan, Maria, Paul, Simon, Sonia, Tao, Todd, and everyone else

that made our group so unique.

During my PhD I was able to attend, volunteer, and mentor at various confer-

ences and schools, first in person, and later online. Among others, I am grateful to

the organisers of the following events: Syco Birmingham 2018, Syco Strathclyde 2018,

VeTSS Workshop on Formal Methods and Tools for Security 2018, Calco 2019, Face-

book Proofs for Bugs 2019, Mfps 2019, Scottish Programming Languages and Ver-

ification Summer School 2019, VeTSS Verified Software Workshop 2019, Pldi 2020,

Popl 2020, Splash 2020, Cav 2021, Icalp 2021, Mfps 2021, Popl 2021, Syco Tallinn

2021, Cav 2022, Mfps 2022. One of the highlights has been the trip to Popl in New

Orleans, in early 2020, just before the first Covid cases became public. I remember

exploring the town with Jana and Tobias, and dancing to live music, late at night.

In addition to my own studies, I have been working as a Teaching Assistant for a

number of courses. I would recommend everyone to do the same during their PhD; it

is a humbling experience. Over the years, I was lucky to meet many students, often

bright, always unique in character. For some courses, I collaborated with other PhD

students, which was particularly fun. Thank you, Tao, Thomas, and Todd!

I was fortunate enough to experience academia not only from the inside, but

also from the outside. Towards the end of my PhD, I completed two twelve-week

internships in the tech industry: first at Amazon, then at Meta. Both experiences

have been very rewarding and have greatly broadened my horizon. It would be a

hopeless attempt to name all of the people I met along the way. There are, however,

a few people I would like to thank particularly.

First of all, there is Byron, who, when I hesitantly reached out to him with the

idea of doing an Amazon internship, replied, to my surprise, instantly, and encouraged

me in his unique way. Thank you, Byron, for forwarding me to the right places.

During the internship I was supervised by Rustan, who was based in Seattle,

while I was working from London. I could not have asked for a better match. Rustan

was very generous. He took the time to meet me virtually on a daily basis and has

answered my endless questions in impressive clarity and depth, and with great spirit.

On top of all, Rustan turned out to be also a tremendous chef and host.

During my time in the London office I met many great people. Thank you Car-

11

oline, Claudia, Daniel, Ilina, Sacha, and everyone else. You have made working

remotely so much easier for me.

As Covid cases were coming down, I was able to complete my second internship at

Meta in person, in London. The Hack language team has been more than welcoming.

Thank you Andrew, Frank, Henri, Max, Michael, Mistral, Scott, and everyone else I

met along the way. Our trips to Cambridge and Menlo Park have been highlights I’ll

cherish. In particular I would like to thank Mistral, my supervisor, who has been a

great mentor and friend. I miss our coffee runs and trips to the climbing hall.

Around the end of 2020, I applied to the SIGPLAN long-term mentorship program.

I am happy to say that since then I have met my mentor on an almost bi-weekly basis.

Thank you, Ravi, your support and sincerity mean a lot to me. I hope we manage to

see each other in person in the near future.

Thanks also to my friends and family for their continuous support during this long

journey. In particular, to my parents, Frank and Gabriele, for their unconditional love

over all the years. Without you two this thesis would not have been possible.

Finally, I’d like to say thanks to Aurora. Thank you for your love, advice, and

understanding. For helping me through the lows, and for celebrating the highs. You

have played a great part in the success of this thesis.

0My research has been supported by GCHQ via the VeTSS grant Automated Black-Box Veri-
fication of Networking Systems (4207703/RFA 15845) and by the ERC via the Consolidator Grant
AutoProbe (101002697).

12

Contents

Declaration 3

Abstract 5

Impact 7

Acknowledgements 9

1 Introduction 17

1.1 Automata Learning . 18

1.2 An Example Run of L∗ . 20

1.3 Other Types of Models . 22

1.4 Guarded Kleene Algebra with Tests 25

1.5 Size-Minimality . 26

1.6 Categorical Perspective . 29

1.7 Main Objectives . 33

1.8 Overview and Contributions . 33

2 Preliminaries 37

2.1 Automata and Behaviour . 37

2.2 Categories . 40

3 Learning Guarded Programs 55

3.1 Introduction . 55

3.2 Overview of the Approach . 58

13

14 Contents

3.2.1 L∗ Algorithm . 58

3.2.2 GL∗ Algorithm . 61

3.3 Guarded Kleene Algebra with Tests 64

3.3.1 Syntax . 64

3.3.2 Semantics: Language Model 65

3.3.3 Semantics: Automata Model 66

3.3.4 A Note on Similarity . 68

3.4 The Minimal Representation m(X) 72

3.4.1 Reachability . 72

3.4.2 Minimality . 78

3.5 Learning m(X) . 85

3.5.1 Properties of m(T) . 87

3.5.2 Relationship Between m(T) and m(X) 89

3.6 Comparison with Moore Automata 95

3.6.1 Embedding of GKAT Automata 95

3.6.2 Complexity Analysis . 98

3.6.3 Optimized Counterexamples 101

3.7 Implementation . 104

3.8 Related Work . 106

3.9 Discussion and Future Work . 108

4 Canonical Automata 111

4.1 Introduction . 112

4.2 Overview of the Approach . 114

4.2.1 Computing Residuals . 115

4.2.2 Taking the Boolean Closure 115

4.2.3 Constructing the Átomaton 116

4.3 Distributive Laws and Bialgebras . 117

4.4 Succinct Automata from Bialgebras 123

4.5 Changing the Type of Succinct Automata 133

4.5.1 Relating Distributive Laws . 134

4.5.2 Deriving Distributive Law Relations 136

Contents 15

4.5.3 Example: The Átomaton . 139

4.5.4 Example: The Distromaton 141

4.5.5 Example: The Minimal Xor-CABA Automaton 142

4.6 Minimality . 144

4.6.1 Applications to Canonical Automata 150

4.7 Related Work . 158

4.8 Discussion and Future Work . 159

5 Generating Monadic Closures 161

5.1 Introduction . 161

5.2 Step 1: Closure . 163

5.2.1 Factorisation Systems and Subobjects 163

5.2.2 Factorising Algebra Homomorphisms 165

5.2.3 The Subobject Closure Functor 169

5.2.4 The Subobject Closure Monad 171

5.2.5 Closing an Image . 180

5.3 Step 2: Generators and Bases . 183

5.3.1 Categorification . 184

5.3.2 Products . 185

5.3.3 Kleisli Representation Theory 188

5.3.4 Bases for Bialgebras . 195

5.3.5 Bases as Coalgebras . 197

5.3.6 Signatures, Equations, and Finitary Monads 199

5.3.7 Finitely Generated Objects 201

5.4 Related Work . 202

5.5 Discussion and Future Work . 203

Bibliography 205

List of Figures 225

16 Contents

Chapter 1

Introduction

As hardware and software systems continue to grow in size and complexity, methods

for their analysis become increasingly important. To study the characteristics of a

system, classical approaches require the existence of a simplified mathematical model

that captures the relevant behaviour of the system. One of the simplest models is

the automaton, which can be thought of as a diagram generated by the states of the

system and transitions between them. Unfortunately, in reality a complex model is

only rarely available, for instance, when the system comes in the form of a black-box

with no access to the source code, or the system is too complex for manual processing.

The aim of automata learning is to automatically infer a minimal sized automata

representation of a system by observing its behaviour. The incremental approach has

been successfully applied to a wide range of verification tasks from finding bugs in

network protocols [48], reverse engineering smartcard reader for internet banking [42],

and industrial applications [61]. A comprehensive survey of the key developments in

automata learning can be found in [153]. As a result of its success, automata learning

has inspired numerous adaptions which target more expressive models.

This thesis develops along two orthogonal axes. On the one hand, we contribute to

the branches of automata learning by developing an algorithm that efficiently learns

a model that captures the behaviour of a simple imperative program by applying

domain-specific optimisations. On the other hand, we further develop the abstract

perspective on automata learning by presenting a mathematical framework that uni-

fies numerous constructions of minimal target models, and unveils new ones.

17

18 Chapter 1. Introduction

a

b

c

b, c

a

a, c

b

c

a, b

a, b, c
a, b, c

Figure 1.1: Up to isomorphism, the unique size-minimal DFA accepting the language
{ab, ac, ba, bc, ca, cb} ⊆ {a, b, c}∗ [20]

The introduction is structured as follows. In Section 1.1 we present the seminal L∗

automata learning algorithm. We continue with an example run of L∗ in Section 1.2.

The content of Section 1.3 is an overview of adaptions of L∗ to other types of target

models. In Section 1.4 we present Guarded Kleene Algebra with Tests, and discuss its

ramifications with automata learning. We then discuss the concept of size-minimality

for target models in Section 1.5. The unifying perspective of category theory on

automata learning is explored in Section 1.6. We continue with a presentation of the

main objectives of the thesis in Section 1.7, and conclude with an overview of the

structure and the contributions of the thesis in Section 1.8.

1.1 Automata Learning

Automata learning can be broadly divided into active and passive learning algo-

rithms. Active learning algorithms infer a model from a system by interacting with

(or querying) the system during the execution of the algorithm. In contrast, during

passive learning, there is no direct access to a system for the duration of the run of

an algorithm. Instead, passive learning algorithms try to model a system based on

potentially insufficient stored data obtained through prior observation. In this thesis,

we will focus on active automata learning.

A non-deterministic finite automaton (NFA) over a fixed input alphabet set of

characters consists of a set of states, partitioned into accepting and rejecting states,

a distinguished initial state, and a transition function that assigns to each state and

input character a set of next states. If at every transition the set of next states

1.1. Automata Learning 19

consists of a single state, then we speak of a deterministic finite automaton (DFA).

Any NFA can be depicted as a directed graph of nodes, which represent its states, and

arrows, which represent transitions, thus are labelled by input characters. The node

representing the initial state is annotated by an arrow without domain. Nodes that

correspond to accepting states are indicated by a double circle. A simple example of

a DFA over the input alphabet {a, b, c} with six states of which one is accepting is

given in Figure 1.1.

A finite sequence of characters in the input alphabet is referred to as word. A set

of words is called a language (over the input alphabet). A word is accepted by a DFA,

if consecutively reading in its characters leads to a transition from the initial state to

an accepting state. A DFA accepts the language that consists of the words it accepts.

A language that is accepted by a DFA is called regular. For any regular language

there is a unique size-minimal DFA accepting it, defined up to a structure-preserving

bijection. For example, the size-minimal DFA accepting the regular language of

words over the alphabet {a, b, c} that have length two and start and end in different

characters is depicted in Figure 1.1.

In active automata learning it is usually assumed that the behaviour of the system

one tries to model is given in terms of an unknown regular language. In consequence,

there exists, in principle, an (unknown) size-minimal DFA that accurately models the

behaviour of the system. Under this assumption, the most simple form of interacting

with a system is through a membership query. During such an idealised interaction,

the learning algorithm submits a word to the system and observes its response. Either,

the word is accepted, that is, it is an element of the regular language that represents

the behaviour of the system, or, it is rejected.

In [118] Moore showed that membership queries alone are insufficient to deduce,

in finite time, a DFA that correctly models the behaviour of a system. Later, Angluin

[13] proved that with the auxiliary knowledge of the number n of states of the mini-

mal DFA accepting the behaviour of the system, there exists a correct algorithm that

converges in finite time, but performs a number of membership queries that is expo-

nential in n in the worst case. Consequently, Angluin described and studied several

other types of queries, in particular, the equivalance query [15]. During such a query,

a hypothesis model is submitted, and either accepted, if it correctly models the target

20 Chapter 1. Introduction

ε
ε 1

a 0

(a)

ε
ε 1
a 0

aa 1

(b)

ε a

a

a

(c)

ε a aa aaa
ε 1 0 1 1
a 0 1 1 1

aa 1 1 1 1

(d)
ε a aa aaa

ε 1 0 1 1
a 0 1 1 1
aa 1 1 1 1

aaa 1 1 1 1

(e)

ε a aa
a a

a

(f)

Figure 1.2: An example run of (a variation of) Angluin’s L∗ algorithm for the target
regular language 1 + a · a · a∗ = {ε, aa, aaa, ...} ⊆ {a}∗

behaviour, or rejected. In the case of rejection, a counterexample is provided, that is,

a word that is either incorrectly accepted or incorrectly rejected by the hypothesis.

In her seminal work [14] Angluin presented L∗, an algorithm that learns the min-

imal DFA accepting a target regular language, by assuming a minimally adequate

teacher, which can answer membership and equivalence queries. The algorithm runs

in time polynomial in the number of states of the minimal DFA and the maximum

length of any counterexample.

The minimal adequate teacher framework should be understood as an elegant

mathematical abstraction, rather than a precise implementation guideline. For in-

stance, verifying whether the behaviour of the hypothesis matches the target lan-

guage can in practice easily become unfeasible. Equivalence queries are thus often

approximated via testing [43]. If a bound to the size of the target model is known, or

the target language is represented by a known automaton for experimental purposes,

equivalence queries can be performed exactly. In the latter case, for example, one can

utilise efficient bisimulation algorithms (see e.g. [70, 32]).

1.2 An Example Run of L∗

We will now give an intuitive account of how Angluin’s L∗ algorithm can be used to

learn via membership and equivalence queries the minimal DFA accepting a given

1.2. An Example Run of L∗ 21

regular language. In our example, we fix the regular target language L = 1+a ·a ·a∗,
which consists of words over the singleton input alphabet {a}, either of length 0 or of

length at least 2. The complete run of L∗ (more precisely, a slight variation1 of it) for

L can be found in Figure 1.2. Its result, the minimal DFA accepting L, has 3 states,

and is depicted in Figure 1.2f.

At the heart of L∗ is a data-structure called observation table, which consists

of partial information about L, gathered by performing membership queries. The

binary value of an observation table at row i and column j specifies whether the

word wi ·wj, obtained by concatenating the words wi and wj at respective indices, is

contained in L, or not. In the former case, the table contains a one, and in the latter

case a zero. An observation table consists of two disjoint parts: an upper part, and

a lower part, visually distinguished by two horizontal lines. Every row in the upper

part of the table denotes the state of a hypothesis automaton that is not necessarily

well-defined yet. The lower part of the table is used to establish the transitional

structure of the automaton. During the run of L∗, the observation table is extended

until a well-defined hypothesis can be constructed. The hypothesis is then checked

for equivalence, leading to termination, if positive, or further refinement of the table

via a counterexample, if negative.

Initially, the observation table for L is initiated with one upper row and one

column, both indexed by the empty word ε. Since the concatenation ε = ε · ε is

accepted by L, the upper left entry of the table in Figure 1.2a contains a one. To

deduce from the table an automaton, we need to determine the state that is reached

from the state indexed by ε, when reading in the character a. To do so, we construct

the lower row indexed by a = ε · a. The resulting table is depicted in Figure 1.2a.

Since the row indexed by a differs from all rows in the upper part of the table

(that is, the one indexed by ε), the automaton potentially corresponding to the table

in Figure 1.2a contains at least two states. Formally, we move the row indexed by a

to the upper part of the table. In consequence, we also need to determine the state

that is reached from the state indexed by a, when reading in the character a. The

1In contrast to the original presentation of L∗, which adds rows for all prefixes of a counterex-
ample, we use a variation by Maler and Pnueli [108], which adds columns for all suffixes of a
counterexample. This has the advantage that consistency checks become redundant.

22 Chapter 1. Introduction

new table, with a row indexed by a · a in its lower part, is depicted in Figure 1.2b.

As every row in the lower part of the table coincides with one upper row, we now can

deduce a well-defined automaton.

The well-defined hypothesis corresponding to the observation table in Figure 1.2b

is given in Figure 1.2c. Its initial state corresponds to the row indexed by ε. The

initial state is also accepting, because the corresponding row contains a one at the

column indexed by ε. Is the behaviour of the hypothesis given by the target language

L? There exists at least one counterexample that witnesses that this is not the case.

For example, the word aaa is accepted by L, but rejected by the hypothesis.

To account for the imprecise behaviour, we add to the observation table in Fig-

ure 1.2b one column for each suffix of the counterexample aaa. The updated table

is depicted in Figure 1.2d. While the rows indexed by ε and aa have previously con-

tained identical values, they now differ, as is witnessed by their entry at the column

indexed by a. As the lower row indexed by aa now differs from all upper rows, we

move it to the upper part of the table. To derive a well-defined transitional struc-

ture, we add a new row indexed by aaa to the lower part of the table. The resulting

structure is depicted in Figure 1.2e.

Since every row in the lower part of the table corresponds to one row in the

upper part of the table, we can derive the well-defined hypothesis Figure 1.2f. As one

verifies, the language accepted by the hypothesis is precisely the target language L,

which completes the execution of L∗.

1.3 Other Types of Models

Since its publication, Angluin’s seminal L∗ algorithm [14] for learning the minimal

DFA accepting a given regular language has inspired numerous variations. On the

one hand, authors have adjusted L∗ by using more efficient data structures [83, 74] and

handling counterexamples differently [130]. On the other hand, L∗ has been extended

to output models other than DFAs, often either equally expressive, but more succinct,

or more expressive, but still efficiently learnable. In this section, we will focus on the

latter type, and give a few examples of such target models.

Some authors have remarked that DFAs are inappropriate to capture the be-

1.3. Other Types of Models 23

haviour of many complex systems [139]. This is due to the behaviour of such systems

being often naturally characterized in terms of complex input-output pairs: the sys-

tem receives an input from the environment, transitions, and produces an output to

the environment. DFAs lack such general input-output behaviour, being classifiers,

which either output 0 (reject) or 1 (accept).

A more natural model for systems exhibiting general input-output behaviour are

Mealy machines [109], which often are also more concise than DFAs. Learning al-

gorithms for Mealy machines based on L∗ have appeared in [124, 139]. Practical

introductions to the general development of active learning, with a focus on Mealy

machines, were given in [145, 144].

Mealy machines are as expressive as Moore automata [118], which generalise DFA

from the two-element Boolean set to an arbitrary output set. Angluin’s L∗ algorithm

can naturally be extended to Moore automata. An optimized version for learning

the products of Moore automata has been presented in [110]. A passive learning

algorithm for Moore automata is the subject of [59].

Another class of automata exhibiting complex input-output behaviour are weighted

automata, which generalise NFAs from the two-element Boolean semiring to arbitrary

semirings. Weighted automata have been used in text processing [117], character

recognition [37], image processing [8, 45], bioinformatics [9], and formal verification

[11]. The characteristics of weighted automata over arbitrary semirings have been

extensively studied [134, 116]. An active-learning algorithm for weighted automata

over the field of rationals inspired by L∗ appeared first in [26], and has later been gen-

eralized to weighted automata over arbitrary fields [27]. A passive learning algorithm

is the subject of [23]. A survey of the developments until 2015 can be found in [22].

The active learning of weighted automata over general semirings is explored in [68].

In many situations automata dealing with infinite instead of finite structures are

a more natural and realistic model of the behaviour of a system. We would like to

emphasise two particular classes of such models. First, automata that allow infinite

input alphabets (typically equipped with rich additional structure), while character-

ising words of finite length. Second, automata that require finite input alphabets,

but characterise words of infinite length.

Three examples of the former type are register automata, symbolic automata, and

24 Chapter 1. Introduction

nominal automata.

Register automata (originally called finite-memory automata [82]) extend deter-

ministic automata to infinite input alphabets by introducing a register that enables

the storage of data for future comparison [51]. Active learning algorithms for register

automata have been the subject of numerous publications [72, 30, 3, 41]. A review of

the developments was given in [73, 2].

Symbolic automata are automata with transitions labelled by predicates over an

input alphabet that is a Boolean algebra of possibly infinite size. The theoretical

aspects of symbolic automata have been extensively studied [148]. A minimisation

procedure, for example, appears in [47]. The learnability of symbolic automata in the

limit is the content of [56]. Angluin-style learning algorithms for symbolic automata

appear in [107, 50].

Nominal sets are sets that are finitely supported with respect to a group action of

permutations on a countably infinite set [125]. Originally introduced as an alternative

to set theory, they have been later rediscovered for name binding in the context

of programming languages. Nominal automata appear, among others, in [97, 137].

Essentially, they generalise DFA to orbit-finite nominal sets and equivariant functions.

An adaptation of L∗ to nominal automata is the content of [112, 111].

An example of the latter type are Büchi automata, which accept the ω-regular

languages of words of infinite length. Büchi automata are central to the automata-

based model checking approach to verification [155]. As such, they have been used to

describe properties of distributed systems [10], are relevant to the synthesis of reactive

systems [126], and appear in termination proofs for programs [98]. The first learning

algorithm for Büchi automata accepting a strict subclass of ω-regular languages has

been introduced by Maler and Pnueli [108]. The first learning algorithm accepting

the full class of ω-regular languages has appeared in [54], and is based on ideas in

[14] and [40]. Another learning algorithm accepting the complete class of ω-regular

languages appeared in [102, 103]. Among others, it introduced a more efficient data

structure [83, 74] to the work of Angluin and Fisman [18].

Apart of above cases, L∗ has also been extended to non-deterministic finite au-

tomata [31], universal finite automata [17], and alternating finite automata [17, 28],

all of which are as expressive as DFAs.

1.4. Guarded Kleene Algebra with Tests 25

(while b do p); q

(a) e

⇒ b, b | 1
b | p

b | q

(b) Xe : X → (2 + Σ×X)At

{bqb, bqb, bpbqb, bpbqb, ...}
(c) 󰌻e󰌼 = 󰌻Xe󰌼 ⊆ (At · Σ)∗ · At

Figure 1.3: The interplay between expressions, automata, and languages in GKAT,
for Σ = {p, q} and At = {b, b}

1.4 Guarded Kleene Algebra with Tests

Even though there are already numerous extensions of Angluin’s seminal L∗ algorithm,

for many different types of target models, one can still find interesting unexplored

domains for its potential application. One such domain is Guarded Kleene Algebra

with Tests (GKAT), a logic that has recently become the subject of increasing interest

[142, 135]. This attention stems from a few remarkable characteristics.

First, it is based on Kleene Algebra with Tests, a well-studied logic with sound

mathematical foundations [92, 89]. Through this relationship many constructions for

it are either directly induced, or at least hinted at. Second, the behaviour of GKAT

expressions e, f, ... can be identified with the one of simple imperative programs (cf.

Figure 3.3 on page 65). It is, for instance, possible to iterate expressions, e; f , or

build new expression via program-flow constructions such as if b then e else f

and while b do e. Third, while remaining overall sufficiently expressive, equivalence

of expressions in GKAT is more efficiently decidable than in its foundations. This

makes the logic particular attractive for scale-sensitive applications such as network

verification [143].

For black-box learning in the spirit of L∗, GKAT is particularly well suited, because

of its well-behaved interplay of expressions, automata, and languages, that closely re-

sembles the one of regular expressions, DFAs, and regular languages. In Figure 1.3c,

for example, is depicted the language which models the behaviour of both the GKAT

expression (while b do p); q, and the GKAT automaton in Figure 1.3b. More gen-

erally, one can, for any GKAT expression, efficiently construct a GKAT automaton

that accepts the same language, and, reversely, for every automaton of a particular

kind, one can find a language equivalent expression (for details see [142]).

26 Chapter 1. Introduction

a

b

c

b, c

a, c

a, b

b, c

a, c

a, b

a

b

c

Figure 1.4: Two non-isomorphic size-minimal NFA accepting the language {ab, ac,
ba, bc, ca, cb} ⊆ {a, b, c}∗ [20]

In this thesis we investigate how the ideas behind L∗ can be used to derive, from

program traces, behavioural equivalent GKAT automata representations, that is, sim-

ple abstractions of imperative programs. Having GKAT’s potential applications in

mind, we are particularly interested in domain-specific optimisations that reduce the

number of involved membership queries, and ways to construct automata representa-

tions that are as compact as possible.

1.5 Size-Minimality

The deterministic finite-state automaton for a given regular target language derived

by L∗ has a remarkable property: first, it accepts the target language, and second,

every other deterministic finite-state automaton accepting the target language has

either a state space of greater size, or is equivalent up to structure-preserving bijection.

In other words, L∗ learns a canonical representation: the unique size-minimal DFA.

As is well-known, the canonical representation of a regular language as DFA can be

explicitly constructed, via the Myhill-Nerode relation [120]. Under this construction,

states of the minimal DFA for a language L ⊆ A∗ over an input alphabet A can be

identified with equivalence classes of residual languages of the type w−1L = {w·u | u ∈
A∗}, for w ∈ A∗. It is not hard to see that the observation table data-structure of L∗

closely resembles this construction. Indeed, at every step, rows indexed by a word w ∈
A∗ approximate the residual language w−1L, since their entry at a column indexed

by u ∈ A∗ coincides with the evaluation u ∈ w−1L. This illustrates that the design

of a learning algorithm should start with the identification and explicit construction

1.5. Size-Minimality 27

b

a

a

b .

(a) The size-minimal DFA

a, b

a

a, b

a

(b) The canonical RFSA

Figure 1.5: Two canonical acceptors for (a+ b)∗a

of a canonical target model. The algorithm itself is then merely a derivation.

Unfortunately, not all classes of acceptors admit a canonical representative. For

example, while there exists, up to isomorphism, precisely one size-minimal DFA ac-

cepting the regular language over the alphabet {a, b, c} of words of length two, starting

and ending in different characters (Figure 1.1), there exist at least two size-minimal

NFAs that are non-isomorphic (Figure 1.4). This immediately leads to the question:

what is a canonical NFA for a given regular language? Answering this question is of

great practical importance, as NFAs can be exponentially more succinct than their

deterministic counterparts. In this case, the advantage is little, with the smallest

DFA being of size 6, whereas a NFA can be constructed with 5 states. Generally,

however, the difference increases with the size of the state-spaces. The problem has

been approached independently, for various types of acceptors with side-effects. Most

approaches have in common their restriction to a subclass that admits a canoni-

cal representative. Some of the better known examples are: the átomaton [39], the

canonical residual finite-state automaton (short canonical RFSA and also known as

jiromaton) [49], the minimal xor automaton [156], and the distromaton [119]. The

canonical RFSA for the regular language L = (a+b)∗a over the input alphabet {a, b},
for instance, is depicted in Figure 1.5b. It is minimal in the subclass of those NFAs

accepting L, for which each state accepts a join of residuals of L. Its similarity to the

minimal deterministic finite automaton for L in Figure 1.5a is striking.

Somewhat surprisingly, the state spaces of all the above canonical minimal repre-

sentatives consist of generators, for different algebraic structures. For example, the

28 Chapter 1. Introduction

state-space of the átomaton is given by the atoms2 for a complete atomic Boolean

algebra, the states of the canonical RFSA are the join-irreducibles3 of a complete

semi-lattice (for example, the states in Figure 1.5b are the irreducibles of the lattice

in Figure 4.6a), and the state-space of the minimal xor automaton consists of a basis

for a vector-space. All these subsets of algebraic structures have in common that

they contain the minimal amount of information to generate from it, by performing

a closure with respect to algebraic operations, the full structure. For example, a sub-

set of a vector space is called a basis for the former if every vector can be uniquely

written as a finite linear combination of basis elements. Part of the importance of

bases stems from the convenient consequences that follow from their existence. For

instance, linear transformations between vector spaces admit matrix representations

relative to pairs of bases, which can be used for efficient numerical calculations.

This observation immediately leads to numerous questions. Is the size-minimality

of the generators underlying the state-spaces related to the size-minimality of the

models? How are the underlying algebraic structures related to the type of side-

effects of the models? What is the connection to the Myhill-Nerode construction

for the minimal deterministic finite automaton? Is there a general procedure for the

construction of minimal representatives?

Some of above questions were answered by Myers et al. [119], whose approach

is based on an equivalence between finite algebras in a locally finite variety and

finite structured sets and relations. Their construction, however, is restricted to non-

deterministic automata, and does not provide a general algorithm to construct a

succinct automaton. A different unifying perspective was given by van Heerdt [66,

63, 64]. One of the central notions in van Heerdt’s work is the concept of a scoop,

originally introduced by Arbib and Manes [19], and essentially a simple category-

theoretic generalisation of algebraic generators. In this thesis, we refer to scoops as

generators, and further develop their abstract theory.

2A non-zero element a in a Boolean algebra B is called an atom, if for all x ∈ B with x ≤ a it
follows x = 0 or x = a. A Boolean algebra B is atomic, if for all x ∈ B there exists a decomposition
x = ∨Iai, where {ai | i ∈ I} is some set of atoms.

3A non-zero element a in a lattice L is called join-irreducible, if for all y, z ∈ L with a = y ∨ z it
follows a = y or a = z. For any x in a finite lattice L there exists a decomposition x = ∨Iai, where
{ai | i ∈ I} is some set of join-irreducibles.

1.6. Categorical Perspective 29

SetT TX

complete semi-lattices {f : X → 2}
K-vector spaces {f : X → K | supp(f) is finite}

complete atomic Boolean algebras {f : (X → 2) → 2}
complete distributive lattices {f : ((X → 2),⊆) → (2,≤) | f is monotone}

Figure 1.6: Algebraic structures as algebras over a monad on the category of sets

1.6 Categorical Perspective

Category theory is a mathematical framework that provides a unifying birds-eye per-

spective on different mathematical structures. The theory’s central subjects are ob-

jects and the relations between them. Relations are treated as first class objects:

they are data, rather than just a property. Examples of categories occur in all areas

of mathematics and computer science. Some of the simplest cases are the categories

sets and functions, and the category of vector spaces and linear maps. One of the

attractive characteristics of category theory is that it allows simple unifying charac-

terisations of constructions that deduce new mathematical objects from existing ones.

For instance, one can show that the cartesian product is for sets and functions what

the direct product is for groups and group homomorphisms. For this thesis, it will be

sufficient to work with a relatively simple subset of category theory. We are particu-

larly interested in algebras and coalgebras, and their combination into bialgebras.

Algebras In the category theoretic approach to universal algebra, algebraic struc-

tures are typically captured as algebras over a monad [52, 104].

In the context of computer science, monads have been introduced by Moggi, as a

general perspective on exceptions, side-effects, and continuations [114, 113, 115]. In-

tuitively, they are a categorification of closure operators4 on partially ordered sets. A

simple example of a monad T on the category of sets is the free K-vector space monad

VK, for any field K. It assigns to a set X the set VK(X) of finitely-supported5 func-

4Closure operators are monotone functions T : P → P that satisfy x ≤ T (x) and T 2(x) = T (x)
for all x ∈ P .

5The support of ϕ : X → K is defined by supp(ϕ) = {x ∈ X | ϕ(x) ∕= 0}. If the set supp(f) is
finite, then we say f has finite support, or is finitely-supported.

30 Chapter 1. Introduction

X P(X) 2A
∗

2× P(X)A 2× (2A
∗
)A

k

{−}

k󰂒

X TX Ω

FTX FΩ

k

η

k󰂒

Figure 1.7: Generalised determinisation of automata with side-effects in a monad

tions ϕ : X → K; maps an element x ∈ X to η(x) ∈ VK(X), the Dirac measure6; and

flattens Φ ∈ V2
K(X) to µ(Φ) ∈ VK(X) in the usual manner: if we write Φ as formal lin-

ear combination
󰁓

ϕ Φϕ ·ϕ, where Φϕ is short for Φ(ϕ), then µ(Φ)(x) =
󰁓

ϕ Φϕ ·ϕ(x).
Most algebraic theories admit a monad on the category of sets by assigning to a set

the set underlying the algebraic structure it freely generates. For example, the free

vector space monad above is of this type.

An algebra over a monad T on the category of sets consists of a set X with a

function h : TX → X that interprets elements in TX in a way that is coherent

with the monad structure. A K-vector space, for instance, is an algebra for the free

K-vector space monad VK. It is given by a set X with a function h : VK(X) → X

that coherently interprets a finitely-supported function λ : X → K (a formal linear

combination) as an actual linear combination h(λ) =
󰁓

x λx · x ∈ X [44]. Any set X

induces a free algebra TX over a set monad, by making use of the monad structure. A

brief list of monads and the theories their algebras correspond to is given in Figure 1.6.

It is straightforward to see that under the above perspective a basis for a K-vector

space consists of a subset Y ⊆ X and a function d that assigns to a vector x ∈ X

a finitely-supported function d(x) ∈ VK(Y) such that h(d(x)) = x for all x ∈ X

and d(h(λ)) = λ for all finitely-supported functions λ : Y → K. In other words,

the restriction of h to finitely-supported functions with domain Y is a bijection with

inverse d, and surjectivity corresponds to the fact that the subset Y generates the

vector space, while injectivity captures that Y does so uniquely. The concept easily

generalises to algebras over arbitrary monads on arbitrary categories by making the

subset relation explicit. The generality also makes formal the intuitive observation

that any set is a generator for the free algebra it induces.

6The Dirac measure η(x) : X → K for x ∈ X satisfies η(x)(y) = 1, if x = y, and 0 otherwise.

1.6. Categorical Perspective 31

Coalgebras In the category theoretic approach to state-based systems, systems are

typically captured as coalgebras over an endofunctor [78, 131, 132].

Endofunctors are categorifications of monotone functions F : P → P on a partially

ordered set. They assign to any object X an object FX, and to every morphism

f : X → Y a morphism Ff : FX → FY . In particular, every monad thus is an

endofunctor. A coalgebra over an endofunctor F on the category of sets consists of

a set X with a function k : X → FX. While algebras describe the construction of

states, their dual notion, coalgebras, capture the deconstruction of states. A simple

example of an endofunctor on the category of sets is the functor F that assigns to

a set X the set 2 × XA, where A is any fixed input set, and operates on functions

as one expects. A coalgebra for it is simply an unpointed (i.e. without a specified

initial state) deterministic automaton: the function k pairs the final state function

and the transition function assigning a next state to each letter a ∈ A. In general,

the definition of the functor F describes the type, or the dynamics of a system. By

varying the underlying category and the type of F , one can recover many different

types of transition systems.

There are many advantages to using the coalgebraic abstraction of state-based

systems. Among others, it allows one to set aside irrelevant specifics of concrete

instantiations, and instead work with elegant, universal properties. For instance, a

central idea in the theory of systems is the notion of observable behaviour. In the

coalgebraic formalism, the semantics of a system is conveniently captured as a unique

structure-preserving function into a final coalgebra Ω. For example, for the above

functor F with FX = 2×XA, the final coalgebra is carried by the set of all languages

A∗ → 2, and the final coalgebra homomorphism assigns to a state x of an unpointed

deterministic automaton the language it accepts, when given the initial state x. This

simplicity has lead to, among others, coalgebra successfully serving as a framework

for the generalisation of automata learning algorithms in the style of L∗ [80, 63, 64].

Bialgebras Of particular interest for us are systems that have both an algebraic

and a coalgebraic component, interacting with each other in a well-defined way.

One simple example of such a system is the unpointed deterministic automaton k󰂒 :

P(X) → 2× P(X)A one obtains from determinising an unpointed non-deterministic

32 Chapter 1. Introduction

x0 x1 x2

a, b b

a

b

a

∨ x1 x2 x0
x1 x1 x2 x1
x2 x2 x2 x2
x0 x1 x2 x0

Figure 1.8: The minimal CSL-structured DFA accepting (a+ b)∗a ⊆ {a, b}∗

automaton k : X → 2 × P(X)A via the classical powerset-construction7. As one

verifies, the coalgebraic structure of the lifting k󰂒 has an additional property: it

preserves the join semi-lattice structure ∪ : P2(X) → P(X) of its state-space. Indeed,

a union U ∪V is accepted if and only if either U or V is accepted; and reading in a at

a state U ∪V leads to a state (U ∪V)a that can equivalently be reached by taking the

union Ua ∪ Va of states reached by reading in a at U and V separately, respectively.

As seen on the right of Figure 1.7, the classical powerset-construction is an in-

stance of a more general procedure which is parametric in an endofunctor F and a

monad T , that interact via a distributive law 8 λ [140, 133]. Under this perspective, a

succinct coalgebra k : X → FTX with side-effects in a monad T is transformed into a

deterministic coalgebra k󰂒 : TX → FTX that interacts well with the freely generated

algebra µ : T 2X → TX, and therefore is called a λ-bialgebra. An example of a bialge-

bra that intertwines the coalgebraic structure of a DFA with the algebraic structure

of a complete semi-lattice (CSL) is depicted in Figure 1.8. Cases of succinct coal-

gebras are numerous, and include, aside of non-deterministic automata, probabilistic

automata, nominal automata, and weighted automata. Active learning algorithms for

succinct coalgebras have been studied by van Heerdt [67, 66, 66]. Distributive laws

have originally been used to compose monads [25], but have since been generalised in

a wide range of ways [147]. Bialgebras occur, among others, in a category-theoretic

perspective on Structural Operational Semantics (SOS) [152, 86, 100, 75].

In this thesis, we study a construction that is reverse to the generalized determini-

7The powerset-construction assigns to an unpointed non-deterministic automaton 〈ε, δ〉 : X →
2×P(X)A the unpointed deterministic automaton 〈ε󰂒, δ󰂒〉 : P(X) → 2×P(X)A defined by ε󰂒(U) =
∨u∈Uε(u) and δ󰂒(U)(a) = ∪u∈Uδ(u)(a).

8A distributive law λ consists of a family of functions λX : TFX → FTX, one for each set X,
satisfying certain coherence conditions.

1.7. Main Objectives 33

sation procedure. That is, we are looking for answers to the following questions. Can

we transform a given bialgebra into a language equivalent succinct coalgebra that is

size-minimal among all solutions? For instance, by exploiting the additional alge-

braic structure of the state-space of a bialgebra through an identification of algebraic

generators? Is it possible to recover canonical automata from this transformation?

Potentially, by identifying minimal generators for a minimal bialgebra?

1.7 Main Objectives

The objectives of this thesis are two-fold.

On the one hand, we would like to add to the automata (learning) theory of

Guarded Kleene Algebra with Tests. It still being a relatively new logic, there are

numerous central but open questions we plan to address, such as the existence of a

minimal acceptor for a given language. Having the logic’s potential applications in

mind, a main goal of ours is to investigate variations and improve the efficiency of

existing black-box learning algorithms that could be applied.

On the other hand, we aim to give a category-theoretic framework that unifies

existing ways to construct minimal automata of different types. Canonical models

of minimal size are the targets of automata learning: the design of algorithms often

closely follows their construction. We expect this abstract approach to clarify and

emphasise the currently under-appreciated role of algebraic generators, and lead to

the discovery of new canonical acceptors. Part of our objective is to work generally

enough such that our results are of value also outside the context of automata theory.

1.8 Overview and Contributions

This thesis consists of five parts. Chapter 1 and 2 contain an introduction and the

preliminaries, respectively. The main contributions are given in chapter 3 to 5. Their

content is as follows.

Chapter 3 In this chapter, we explore the automata theory of Guarded Kleene

Algebra with Tests (GKAT). In particular, we present GL∗ (Algorithm 2), an active

34 Chapter 1. Introduction

learning algorithm that derives a GKAT automaton representation of a black-box, by

observing its behaviour through queries.

For any GKAT automaton, we define a second automaton, which we call its

minimisation (Definition 3.4.2.1). In a series of results, we prove central properties

about the minimisation of an automaton (Corollary 3.4.2.10, Lemma 3.4.2.7, Corol-

lary 3.4.2.9, Corollary 3.4.2.8). We show that if GL∗ is instantiated with the language

accepted by a particular type of GKAT automaton, then the algorithm terminates

with its minimisation in finite time (Theorem 3.5.2.6). We show that the semantics

of GKAT automata can be reduced to the well-known semantics of Moore automata

(Lemma 3.6.1.1, Corollary 3.6.1.2). A complexity analysis (Proposition 3.6.2.1) shows

that it is more efficient to learn a representation with GL∗ than with an existing vari-

ation of L∗ for Moore automata. We implement GL∗ and L∗ in OCaml [122] and

compare their performances on example programs (Figure 3.6).

The contributions of this chapter are based on the following publication (published

at the 38th International Conference on Mathematical Foundations of Programming

Semantics), of which the author of this thesis is the main author:

Stefan Zetzsche, Alexandra Silva, and Matteo Sammartino. “Guarded Kleene

Algebra with Tests: Automata Learning”. In: Electronic Notes in Theoretical In-

formatics and Computer Science Volume 1 - Proceedings of MFPS XXXVIII (2023).

doi: 10.46298/entics.10505

Chapter 4 In this chapter, we provide a general categorical framework based on

bialgebras and distributive law homomorphisms that unifies constructions of canonical

non-deterministic automata and unveils new ones.

We strictly improve the expressivity of previous work [67, 19] by including the

átomaton (Section 4.5.3) and the distromaton (Section 4.5.4), which were previously

excluded. While other frameworks restrict themselves to the category of sets [67],

we are able to include canonical acceptors in other categories, such as the canonical

nominal RFSA (Example 4.4.0.12). By relating vector spaces over the unique two ele-

ment field with complete atomic Boolean algebras, we discover a previously unknown

canonical mod-2 weighted acceptor for regular languages (Section 4.5.5). Finally, we

show that every regular language satisfying a suitable property parametric in two

https://doi.org/10.46298/entics.10505

1.8. Overview and Contributions 35

monads admits a size-minimal succinct acceptor (Theorem 4.6.0.5) and establish a

size comparison between different acceptors (Section 4.6.1).

The contributions of this chapter are based on the following publication (published

at the 37th International Conference on Mathematical Foundations of Programming

Semantics), of which the author of this thesis is the main author:

Stefan Zetzsche, Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva.

“Canonical Automata via Distributive Law Homomorphisms”. In: Electronic Pro-

ceedings in Theoretical Computer Science 351 (2021), 296–313. doi: 10.4204/eptcs.

351.18

Chapter 5 In this chapter, we show that the construction of canonical automata

underlying our categorical framework is an instance of a more general theory.

First, we see (Example 5.2.5.2) that deriving a minimal bialgebra from a minimal

coalgebra can be realized by applying a monad (Theorem 5.2.4.2) on a category of

subobjects with respect to an epi-mono factorisation system (Definition 5.2.1.2). We

then explore the abstract theory of generators and bases for algebras over a monad.

We define a category of algebras with generators (Definition 5.3.1.1), which, we show,

is in adjunction with the category of Eilenberg-Moore algebras (Lemma 5.3.1.2). We

discuss products of generators and bases, and see that, under certain assumptions,

the category of algebras with generators is monoidal (Corollary 5.3.2.2). The content

of Section 5.3.3 is a generalisation of the representation theory of vector spaces. In

Section 5.3.4 we discuss bases for bialgebras, which are algebras over a particular

monad. A comparison of our ideas with an alternative approach that generalises

bases as coalgebras is the content of Section 5.3.5. Signatures, equations, and finitary

monads are discussed in Section 5.3.6. Finally, in Section 5.3.7, we relate our work

to the theory of locally finitely presentable categories.

The contributions of this chapter are based on the following publication (published

at the 10th Conference on Algebra and Coalgebra in Computer Science), of which the

author of this thesis is the main author:

Stefan Zetzsche, Alexandra Silva, and Matteo Sammartino. “Generators and

Bases for Monadic Closures”. In: arXiv preprint arXiv:2010.10223 (2023)

https://doi.org/10.4204/eptcs.351.18

36 Chapter 1. Introduction

Chapter 2

Preliminaries

In this chapter, we will review the basic mathematical tools necessary to follow the

more advanced constructions in this thesis. Readers familiar with the foundations of

the theories of automata and categories may want to skip these pages.

2.1 Automata and Behaviour

The main subjects of this thesis are generalisations of automata and ways to construct

them by observing the behaviour of a black-box system. In this section, we briefly

recall the very basic definitions of (classical) automata theory. The presentation is

entirely standard. For texts that present the full theory we recommend e.g. [94].

We begin with the definition of a non-deterministic automaton. Whether the non-

deterministic or deterministic case is more elementary, thus should be given first, is

a matter of taste, since the two notions are equivalent, as is well-known.

Definition 2.1.0.1 (Non-Deterministic Automaton). A non-deterministic automa-

ton (NA) is a tuple X = (X,Σ, δ, ε, x0) consisting of:

• a set X called state space;

• a finite non-empty set Σ called alphabet ;

• a transition function δ : X → P(X)Σ;

37

38 Chapter 2. Preliminaries

• a function ε : X → 2 characterising accepting states ;

• an initial state x0 ∈ X.

If the state space X is finite, we speak of a non-deterministic finite automaton (NFA).

A non-deterministic automaton for which the set δ(x)(a) consists of only one state,

for all x ∈ X and a ∈ Σ, is called a deterministic automaton (DA). A deterministic

automaton with finite state space is called a deterministic finite automaton (DFA).

Every non-deterministic automaton X induces a deterministic automaton X 󰂒 =

(P(X),Σ, δ󰂒, ε󰂒, {x0}), via the powerset construction, defined by:

δ󰂒(U)(a) =
󰁞

u∈U

δ(u)(a), ε󰂒(U) =
󰁢

u∈U

ε(u).

Clearly X is finite if and only if X 󰂒 is finite.

We say that a state x ∈ X in a DA transitions to a state y ∈ X via an input

character a ∈ Σ, if δ(x)(a) = y, in which case we write x
a→ y. A state x ∈ X in a DA

is accepting, if ε(x) = 1, and rejecting otherwise. The transition function δ : X → XΣ

of a DA can be inductively extended to a function 󰁥δ : X → XΣ∗
that operates on

words as follows:

󰁥δ(x)(ε) = x, 󰁥δ(x)(av) = 󰁥δ(δ(x)(a))(v).

For any w ∈ Σ∗, we write 󰁥δw : X → X for the function defined by 󰁥δw(x) = 󰁥δ(x)(w).
It is not hard to see that 󰁥δ is a right-action of the free monoid Σ∗ on the set X, that

is, it satisfies 󰁥δε = idX and 󰁥δv·w = 󰁥δw ◦ 󰁥δv. A state x ∈ X in a DA is reachable (from

the initial state x0), if there exists a word w ∈ Σ∗, such that 󰁥δ(x0)(w) = x. A DA

is reachable, if all of its states are reachable. Composing 󰁥δ with the characterising

function ε yields a function

󰌻−󰌼 = εΣ
∗ ◦ 󰁥δ : X → 2Σ

∗

that assigns to any state x ∈ X its behaviour, or semantics, 󰌻x󰌼 ∈ 2Σ
∗
. A deterministic

automaton is observable, if 󰌻−󰌼 is injective, that is, states can be distinguished by

2.1. Automata and Behaviour 39

observing their behaviour. A word w ∈ Σ∗ is accepted by a state x ∈ X of a DA, if it

induces a transition from x to an accepting state, 󰌻x󰌼(w) = 1. The language accepted

by a deterministic automaton X consists of the words accepted by its initial state,

󰌻X 󰌼 = 󰌻x0󰌼 : Σ∗ → 2.

Note that we sometimes implicitly identify characteristic functions with subsets, that

is, in this case, we may speak of the set of accepted words 󰌻X 󰌼 ⊆ Σ∗. We call

two deterministic automata X and Y language equivalent, if they accept the same

languages, 󰌻X 󰌼 = 󰌻Y 󰌼.
The semantics of a NA X is defined in terms of its determinisation, that is,

󰌻X 󰌼 = 󰌻X 󰂒󰌼. It is not hard to see that NFA and DFA accept the same class of

languages: the regular languages.

Regular languages are unique in that they have a particularly nice property: for

any regular language, there exists a (uniquely defined up-to isomorphism) determin-

istic finite automaton that accepts it and has the smallest state-space among all

deterministic finite automata with the same behaviour. To this end, we make the

following definition.

Definition 2.1.0.2 (Minimal Deterministic Automaton). The minimal deterministic

automaton for a language L ⊆ Σ∗ is the deterministic automatonML = (Der(L), δ, ε, L),

where:

• Der(L) = {w−1L | w ∈ Σ∗};

• w−1L = {v ∈ Σ∗ | wv ∈ L};

• δ(w−1L)(a) = (wa)−1L;

• ε(w−1L) =

󰀻
󰀿

󰀽
1 w ∈ L

0 else
.

The states of the minimisation are called derivatives or residuals (of L) and cor-

respond to the equivalence classes of the Myhill-Nerode relation ≃L ⊆ Σ∗ × Σ∗:

w1 ≃L w2 :⇔ w−1
1 L = w−1

2 L.

40 Chapter 2. Preliminaries

A central result of classical automata theory says that the Myhill-Nerode relation

≃L admits finitely many equivalence classes if and only if L is regular.

Lemma 2.1.0.3 ([120]). ML is finite if(f) L is regular.

The minimal DFA ML for a regular language L is reachable and observable, and

it accepts L. It deserves its name since it is minimal in the following sense: For any

DFA X accepting L, it holds |ML| ≤ |X | with |ML| = |X | if and only if there is an

isomorphism ML
∼= X . Note that this implies that all DFA of minimal-size accepting

L are isomorphic to ML. As we will see later, the existence of a uniquely defined

size-minimal acceptor in this sense is somewhat special to DFA.

2.2 Categories

In this section we give a brief introduction to the foundations of category theory. Our

presentation is standard and may be skipped by readers familiar with categories, func-

tors, natural transformations, adjoints, and monads. The scope of the presentation is

limited by the applications of category theory in this thesis. Some elementary notions

such as limits and Kan extensions are omitted. There are many great introductory

texts that go into more depth, for instance [105, 21, 99].

Objects and Morphisms The central subjects of category theory are objects and

the relations between them. Most notably, relations are not just a property, but are

treated as data, witnessed by morphisms.

Definition 2.2.0.1 (Category). A category C consists of the following data:

• A class of objects A,B,C,D, ..., X, Y, Z

• A class of morphisms or arrows f, g, h, ...

• A binary operation that assigns to each morphism f two objects dom(f), and

cod(f) called the domain and codomain of f , respectively. The expression

f : X → Y indicates that X = dom(f) and Y = cod(f).

2.2. Categories 41

• A binary operation that assigns to any two morphisms f : X → Y and g : Y →
Z a morphism g ◦ f : X → Z called the composition of f and g.

• For any object X, there is a morphism 1X = idX : X → X called the identitiy

morphism of X.

The data is required to satisfy the following constraints:

• If f : A → B, g : B → C and h : C → D, then h ◦ (g ◦ f) = (h ◦ g) ◦ f.

• If f : X → Y , then f ◦ 1X = f = 1Y ◦ f.

The class of morphisms with domainX and codomain Y is denoted by HomC (X, Y)

or C (X, Y). If convenient, we omit parentheses and write fg for f ◦ g. The expres-

sions X ∈ C and f ∈ C indicate that X is an element of the class of objects of C

and f is an element of the class of morphisms of C , respectively.

A category is locally small, if its class of morphisms C (X, Y) is a set for any choice

of objects, and small, if it is locally small and its class of objects is a set.

The canonical example of a category is Set, which has sets as objects and functions

as morphisms. Many other examples stem from algebraic theories. In this thesis, we

are mainly interested in the following cases:

• The category K-Vect has as objects vector spaces over a field K and as mor-

phisms K-linear maps.

• The category CSL has as objects complete join-semi lattices, and as morphisms

functions that preserve all joins.

• The category CABA has as objects complete atomic Boolean algebras, and as

morphisms Boolean algebra homomorphisms that preserve all meets and joins.

• The category CDL has as objects completely distributive lattices, and as mor-

phisms functions that preserve all meets and all joins.

• The category A-Nom has as objects finitely supported nominal1 A-sets, and as

1Let Perm(A) be the set of permutations on A, i.e. the bijective functions π : A → A. A nominal
A-set is a set X equipped with an action of the permutation group (Perm(A), idA, ◦). We say that a
nominal set has finite support, if for each x ∈ X, there exists a finite set Ax ⊆ A such that for all
π ∈ Perm(A) with π.a = a for all a ∈ Ax, we have π.x = x. A function f : X → Y between nominal
sets is equivariant if f(π.x) = π.f(x) for all π ∈ Perm(A), x ∈ X.

42 Chapter 2. Preliminaries

morphisms equivariant functions, for any countable set A.

In some sense, categories are generalisations of monoids. Indeed, any monoid

M induces a category that consists of one object, 󰂏, and a family of morphisms

(fm : 󰂏 → 󰂏)m∈M , composed by fmfn = fmn. The category induced by the trivial

monoid is called the final category and is denoted by 1Cat. It consists of one object 󰂏

and one morphism, the identity 1󰂏.

Categories induce, and can be composed to, new categories. For example, the

opposite or dual category C op of a category C has the same objects as C , but an

arrow f : X → Y in C op is an arrow f̃ : Y → X in C . Another example is the

product category C × D of categories C ,D , which consists of pairs of objects and

pairs of morphisms, and component-wise defined composition.

Diagrammatical Proofs Many proofs in this thesis are given diagrammatically,

via a method called diagram chasing. To this end, assume we are given the following

objects and morphisms between them:

A B C

D E F

f

i

g

l h

j k

We say that the outer diagram commutes, if hgf = kji. To prove that the outer

diagram commutes, it is sufficient to show that the two inner diagrams commute,

that is, lf = ji and hg = kl. Diagrammatical proofs divide and conquer : they slice

larger diagrams into smaller diagrams whose commutativity is known.

Universal Properties Many constructions in category theory are given in terms

of universal properties, that define an object, if it exists, uniquely up to unique iso-

morphism. Below we give a few basic examples of such characterisations:

• A product of two objects X, Y consists of an object X × Y and two morphisms

πX : X × Y → X and πY : X × Y → Y that satisfy the following universal

property: For every object Z and two morphisms fX : Z → X and fY :

2.2. Categories 43

Z → Y , there exists a unique morphism 〈fX , fY 〉 : Z → X × Y , such that

fX = πX ◦ 〈fX , fY 〉 and fY = πY ◦ 〈fX , fY 〉:

Z X

Y X × Y

fX

fY
∃!〈fX ,fY 〉

πX

πY

.

The morphisms πX , πY are referred to as the projections of the product. In the

category of sets and functions, all binary products exist: they are given by the

cartesian product X × Y = {(x, y) | x ∈ X, y ∈ Y } with its usual projections.

• An exponential of objects Y, Z in a category with binary products consists of an

object ZY and a morphism ε : ZY ×Y → Z, called evaluation, such that for any

object X and morphism f : X × Y → Z there is a unique arrow f † : X → ZY

such that ε ◦ (f † × 1Y) = f :

X × Y

Z

f

X

ZY

∃!f†

X × Y

ZY × Y Z

f
f†×1Y

ε

A category that has all finite products and exponentials is called cartesian

closed. The category of sets and functions is cartesian closed: an exponential

XY consists of all functions f : Y → X, and ε satisfies ε(f)(y) = f(y).

• An object 0 is initial, if for any objectX there is a unique morphism !X : 0 → X.

In the category of sets and functions, there is an initial object, the empty-set ∅.

Duality The theory of categories has built in a notion of duality, which admits for

any construction a second one, of symmetric importance. Many well-known mathe-

matical entities can be shown to come in such duality pairs.

One simple example of such a pair is given by the cartesian product and the

disjoint union of sets. Indeed, by defining the coproduct X + Y in C as the product

X × Y in C op, one can show that in Set the coproduct of two sets is given by their

44 Chapter 2. Preliminaries

disjoint union with its obvious embeddings.

Another example follows from defining an object 1 in C as final, if it is initial in

C op. That is, for any object X, there exists a unique morphism !X : X → 1. In the

category Set, any singleton set {󰂏} is a final object.

Functors At the heart of category theory lies the idea that relationships between

entities are equally as important as the entities themselves. That is, for any type

of object, there should exist a corresponding type of morphism that preserves their

structure. The natural type of structure-preserving morphism that corresponds to

categories is called a functor and defined below.

Definition 2.2.0.2 (Functor). A functor F : C → D between categories C and D

consists of the following data:

• For each object X in C there is an object F (X) in D .

• For each morphism f : X → Y in C there is a morphism F (f) : F (X) → F (Y)

in D .

The data is subject to the following constraints:

• If X is an object in C , then F (1X) = 1F (X).

• If f : X → Y and g : Y → Z are morphisms in C , then F (g ◦ f) = F (g) ◦F (f).

If convenient, we omit parentheses and write FX for F (X), and Ff for F (f).

For every category C there exists an identity functor 1C : C → C , which maps

objects and morphisms to themselves. The composition of two functors F : C → D

and G : D → E is the functor G ◦ F : C → E defined by G ◦ F (X) = G(F (X)) and

G ◦ F (f) = G(F (f)). There exists a category, denoted by Cat, that has as objects

small2 categories and as morphisms functors between them. Many familiar categories

can be recovered as universal constructions within this category. For example, the

product category C × D can be recognised as the product of C ,D in Cat.

2For the same reason one cannot have a set of all sets, one can not construct a category that
contains all categories as objects. A standard way to deal with the issue is to allow only small
categories as objects. There are other ways (e.g. by using the language of higher category-theory)
to avoid running into paradoxes. We will not encounter Cat again, thus refrain from elaborating.

2.2. Categories 45

There are numerous examples of functors, in every corner of mathematics. Simple

generic cases are given by the constant3 functor FX : C → D (for any X ∈ D), the

diagonal4 functor ∆ : C → C × C , and the product5 functor Π : C × C → C (for

any category C with binary products). A few more concrete examples are:

• The dual vector space functor (−)∗ : (K-Vect)op → K-Vect is defined on vector

spaces over a fieldK by V ∗ = K-Vect(V,K), and on linear maps f by f ∗(g) = gf .

• The free vector space functor VK : Set → K-Vect over a field (K,+, ·) is defined
on objects by VK(X) = {ϕ : X → K | supp(ϕ) is finite5}, equipped with

the vector space structure induced by K, and on morphisms f : X → Y by

VK(f)(ϕ)(y) =
󰁓

x∈f−1(y) ϕ(x) ∈ K. The forgetful functor U : K-Vect → Set

maps a vector space to its set of states, and a linear map to itself, viewed as

function.

• The free complete join-semi lattice functor P : Set → CSL is defined on sets X

by PX = 2X , equipped with the join-semi lattice structure induced by 2, and

on morphisms f : X → Y by 2f (ϕ)(y) = ∨x∈f−1(y)ϕ(x) ∈ 2. Equivalently, if we

identify subsets with their characteristic functions, PX = {U | U ⊆ X} and

Pf(U) = {f(u) | u ∈ U}. As before, the forgetful functor U : CSL → Set maps

objects and morphisms to their underlying sets and functions.

Natural Transformations Morphisms relate objects, functors relate categories,

and natural transformations relate functors. (Historically the interest in these notions

has in fact been inverse to what the progression suggests. That is, Mac Lane had

an interest in natural transformations in the context of homology that pre-dates the

formal introduction of a functor [105].)

Definition 2.2.0.3 (Natural Transformation). A natural transformation η : F ⇒ G

between functors F,G : C → D on categories C ,D consists of a family of morphisms

3For any objectX ∈ D , the constant functor FX : C → D satisfies FX(Y) = X and FX(f) = 1X .
4The diagonal functor ∆ : C → C × C is defined by ∆(X) = (X,X) and ∆(f) = (f, f).
5For any category C with binary products, the product functor Π : C × C → C is defined

on objects by Π(X,Y) = X × Y , and on morphisms f : X → X ′ and g : Y → Y ′ by Π(f, g) =
〈fπX , gπY 〉 : X × Y → X ′ × Y ′.

46 Chapter 2. Preliminaries

(ηX : FX → GX)X∈C in D , subject to the following naturality constraint: If f :

X → Y is a morphism in C , then the following diagram commutes:

FX GX

FY GY

Ff

ηX

Gf

ηY

The class of natural transformations between F and G is denoted by Nat(F,G).

For any functor F there exists an identity transformation 1F ∈ Nat(F, F) that is

defined by (1F)X = 1FX . A natural isomorphism is a natural transformation for

which the morphism ηX is an isomorphism for every object X.

The classical example of a natural transformation is η : 1K-Vect ⇒ (−)∗∗, given

component-wise as the linear map ηV : V → V ∗∗ defined by ηV (x) = evx : V ∗ → K,

where evx(f) = f(x). If V is finite-dimensional, the embedding ηV is an isomorphism,

V ∼= V ∗∗. Since the definition of ηV does not require the choice of a basis for V , it

is canonical or natural. (On the other hand, any isomorphism witnessing V ∼= V ∗ for

finite-dimensional V requires the choice of a basis, thus is not natural.)

Natural transformations compose with functors. That is, for any transformation

η : F ⇒ G between functors F,G : C → D , and functor H : D → E , there is a

natural transformation Hη : HF ⇒ HG defined component-wise by (Hη)X = HηX ,

and for any functor K : B → C , there is a natural transformation ηK : FK ⇒ GK

defined by (ηK)X = ηKX . Natural transformations can also be composed with each

other, both vertically6 and horizontally7. Vertical and horizontal composition satisfy

the exchange law (ε′η′) 󰂏 (εη) = (ε′ 󰂏 ε)(η′ 󰂏 η).

If C is a small category and D is any category, one can form the functor category

DC . Its objects are functors F,G : C → D , and morphisms are natural transforma-

tions η : F ⇒ G, composed vertically. A natural transformation is an isomorphism

in a functor category if and only if it is a natural isomorphism.

6If η : F ⇒ G and ε : G ⇒ H are natural transformation between functors F,G,H : C → D ,
then their vertical composition εη : F ⇒ H is defined component-wise by (εη)X = εX ◦ ηX .

7If η : F ⇒ G is a natural transformation between functors F,G : C → D and ε : J ⇒ K
is a natural transformation between functors J,K : D → E , then their horizontal composition
ε 󰂏 η : JF ⇒ KG is defined as the composition ε 󰂏 η := εGJη.

2.2. Categories 47

Adjoints In many situations, two categories are not isomorphic, but still closely

related to each other. Often this weaker form equivalence can be captured by a

notion called adjointness. Below, we give three different definitions, which all can be

shown to be equivalent8 to each other. Having different formulations at hand will

make it easier for us to deduce structure relevant for later purposes.

Definition 2.2.0.4 (Adjunction 1). We call a functor F : D → C left adjoint to a

functor G : C → D , and write F ⊣ G, if there exists a natural isomorphism

φX,Y : C (FY,X) ∼= D(Y,GX).

between functors of type Dop × C → Set.

Definition 2.2.0.5 (Adjunction 2). We call a functor G : C → D a right adjoint

functor, if for each object Y in D there exists an object FY in C and a morphism

ηY : Y → GFY such that for every object X in C and every morphism g : Y → GX,

there exists a unique morphism g󰂒 : FY → X making the following diagram commute:

GFY GX

Y

Gg󰂒

ηY
g

In the above situation, one can show that F extends to a functor F : D → C by

defining it on morphisms g : Y → X as Fg := (ηX ◦ g)󰂒, and η extends to a natural

transformation η : 1D ⇒ GF . The functor F is called a left adjoint to G.

Definition 2.2.0.6 (Adjunction 3). We call a functor F : D → C a left adjoint

functor, if for each object X ∈ C there exists an object GX in D and a morphism

εX : FGX → X such that for every object Y in D and every morphism f : FY → X,

8For instance, Definition 2.2.0.4 and Definition 2.2.0.5 are equivalent via the relations φX,Y (f) =
G(f)◦ηY and ηY = φFY,Y (1FY). Similarly, the equivalence of Definition 2.2.0.4 and Definition 2.2.0.6
follows from φ−1

X,Y (g) = εX ◦ F (g) and εX = φ−1
X,GX(1GX).

48 Chapter 2. Preliminaries

there exists a unique morphism f † : Y → GX making the following diagram commute:

FGX FY

X

εX

Ff†

f

In the above situation, one can show that G extends to a functor G : C → D by

defining it on morphisms f : Y → X as Gf := (f ◦ εY)†, and ε extends to a natural

transformation ε : FG ⇒ 1C . The functor G is called a right adjoint to F .

The natural transformations η and ε are referred to as the unit and counit of the

adjunction, respectively. We further define the natural transformations µ := GεF and

δ := FηG. The unit η and the counit ε of an adjunction satisfy the triangle identities

(Gε)ηG = 1G and εF (Fη) = 1F . Adjoints are unique up to isomorphism, that is, if

F ⊣ G and F ⊣ H, then there exists a natural isomorphism G ∼= H. Adjunctions can

be composed: if F ⊣ G is an adjunction between C and D , and J ⊣ K an adjunction

between D and E , then one can show that JF ⊣ GK is an adjunction between C and

E . We conclude with a brief list of adjunctions between previously defined functors:

• Assume C has all binary products. Then ∆ ⊣ Π, that is, the diagonal functor

∆ : C → C × C is left adjoint to the product functor Π : C × C → C .

• Assume C has all binary products and exponentials. Then − × Y ⊣ (−)Y for

any object Y ∈ C , i.e. the partial product functor − × Y : C → C is left

adjoint to the partial exponential (−)Y : C → C .

• The free vector space functor VK : Set → K-Vect over a field (K,+, ·) is left

adjoint to the forgetful functor U : K-Vect → Set. The unit of the adjunc-

tion VK ⊣ U is given by ηX(x)(y) = [x = y] and µ satisfies µX(Φ)(x) =
󰁓

ϕ∈VK(X) Φ(ϕ) · ϕ(x) for Φ ∈ V2
K(X)

Monads Given an adjunction F ⊣ G, it is not unnatural to ask what structure

the endofunctors arising as the compositions GF and FG can be equipped with.

Two particularly interesting choices are the structures (GF, η, µ) and (FG, ε, δ). Ax-

iomatising the characteristics of the former choice leads to a structure called monad,

2.2. Categories 49

whereas the latter choice leads to a structure called comonad. While the two notions

are dual, thus symmetric, we are particularly interested in the former case.

Definition 2.2.0.7 (Monad). A monad on a category C is a tuple (T, η, µ) consisting

of an endofunctor T : C → C and natural transformations η : 1C ⇒ T and µ : T 2 ⇒ T

satisfying the following two commutative diagrams:

T 3 T 2

T 2 T

µT

Tµ µ

µ

T T 2

T 2 T

ηT

1TTη µ

µ

. (2.1)

By an abuse of notation we will refer to a monad by its underlying endofunctor.

A morphism (F,α) : (C , S) → (D , T) between a monad S on a category C

and a monad T on a category D consists of a functor F : C → D and a natural

transformation α : TF ⇒ FS satisfying α◦ηTF = FηS and FµS ◦αS ◦Tα = α◦µTF

[146]. The composition of monad morphisms (F,α) : (C , S) → (D , T) and (G, β) :

(D , T) → (E , U) is the monad morphism (GF,Gα ◦ βF) : (C , S) → (E , U) [146].

A convenient way to view a monad on C is as categorified monoid in the category

of endofunctors on C , equipped with functor composition as monoidal product and

the identity functor 1C as unit. Under this perspective, the constraints (2.1) are

precisely the associativity and unit laws of a monoid, respectively.

We continue with a list of monads that will be relevant in the course of this thesis:

Examples 2.2.0.8. • The powerset monad P on Set assigns to a set X the set

PX = X → 2, and to a function f the function Pf defined by Pf(ϕ)(y) =

∨x∈f−1(y)ϕ(x). Its unit satisfies ηX(x)(y) = [x = y], where [x = y] = 1, if

x = y, and 0 otherwise, and its multiplication µX(Φ)(x) = ∨ϕ∈2XΦ(ϕ) ∧ ϕ(x).

Equivalently, if one identifies characteristic functions with subsets, PX = {U |
U ⊆ X}, Pf(U) = {f(u) | u ∈ U}, ηX(x) = {x}, and µX(Φ) = ∪U∈ΦU .

• The free vector space monad VK over a field (K,+, ·) on Set is defined by

VK(X) = {f : X → K | supp(f) is finite} and VK(ϕ)(y) =
󰁓

x∈f−1(y) ϕ(x).

Its unit is given by ηX(x)(y) = [x = y] and its multiplication by µX(Φ)(x) =󰁓
ϕ∈VK(X) Φ(ϕ) · ϕ(x) for Φ ∈ V2

K(X). The free vector space monad over the

50 Chapter 2. Preliminaries

CT D C T

C

KT

UT
U

KT

UT

FT

F

FT

Figure 2.1: The category of adjunctions for a monad T on C

unique two element field (Z2,⊕,∧) – with the exclusive disjunction ⊕ as addi-

tion, and the normal conjunction ∧ as multiplication – is denoted by R.

• The neighbourhood monad H on Set assigns to a set X the double dual function

space HX = (X → 2) → 2, and to a function f the function Hf defined by

Hf(Φ)(ϕ) = Φ(ϕ ◦ f). Its unit is given by ηHX(x)(ϕ) = ϕ(x), and its multipli-

cation satisfies µH
X(Ψ)(ϕ) = Ψ(ηH2X (ϕ)).

• The monotone neighbourhood monad A on Set assigns to a set X the set of

monotone functions AX = (X → 2,⊆) → (2,≤), and otherwise coincides with

the neighbourhood monad.

• The nominal powerset monad Pn on A-Nom assigns to a nominal set X the

nominal set PnX = {B ⊆ X | B finitely supported}, where π.B := {π.b | b ∈
B}, and otherwise coincides with the classical powerset monad P [125].

Algebras Every adjunction yields a monad. As it turns out, the inverse holds too.

That is, given a monad, there is always an adjunction that yields it. In fact, there

often is more than one adjunction giving rise to a monad. Below we construct the

extreme solutions, using the Eilenberg-Moore and Kleisli categories.

Definition 2.2.0.9 (Eilenberg-Moore Category). An algebra over a monad T on C is

a pair (X, h) consisting of an object X and a morphism h : TX → X in C satisfying

the following two commutative diagrams:

T 2X TX

TX X

Th

µX h

h

X

TX X

ηX
idX

h

.

2.2. Categories 51

A homomorphism f : (X, hX) → (Y, hY) between T -algebras is a morphism f : X →
Y such that hY ◦ Tf = f ◦ hX . The Eilenberg-Moore category consists of T -algebras

and T -algebra homomorphisms and is denoted by C T .

The categories C and C T can be related as follows. On the one hand, there is

the forgetful functor UT : C T → C , defined by UT (X, h) = X and UT (f) = f .

On the other hand, there is the free algebra functor F T : C → C T , which satisfies

F T (X) = (TX, µX) and F T (f) = Tf . One can show that the pair satisfies an adjoint

relation F T ⊣ UT that gives rise to T , and is final among all adjoint pairs inducing T .

That is, for any adjunction F ⊣ U between functors with induced monad T = UF ,

there exists a comparison functor KT : D → C T that has the property UTKT = U

and KTF = F T . One can show that KT is the unique functor with this property. An

adjunction is monadic, if its comparison functor is an isomorphism.

The adjoint pair at the other end of the spectrum can be constructed as follows.

Definition 2.2.0.10 (Kleisli Category). The Kleisli category for a monad T on C ,

denoted by CT , has the same objects as C ; a morphism f : X 󰃼 Y in CT is a

morphism f : X → TY in C ; and the composition of f : X 󰃼 Y and g : Y 󰃼 Z in

CT is the composition µZ ◦ Tg ◦ f : X → TZ in C .

Analogously as before, the categories C and CT can be related via two functors.

On the one hand, there is the functor UT : CT → C , defined by UT (X) = TX and

UT (f : X 󰃼 Y) = µY ◦ Tf . On the other hand, there is the functor FT : C → CT ,

defined by FT (X) = X and FT (f : X → Y) = ηY ◦ f . The two functors satisfy

an adjoint relation FT ⊣ UT that gives rise to the monad T = UTFT , and for any

adjunction F ⊣ U with induced monad T = UF , there exists a comparison functor

KT : CT → D that is uniquely defined by the property UKT = UT and KTFT = F .

Figure 2.1 summarises the initiality of the Kleisli category CT and the finality of

the Eilenberg-Moore category C T among adjoint pairs giving rise to T .

Often, the Eilenberg-Moore category of algebras over a monad can be recognised

as a category of algebras over some theory in the sense of universal algebra. (This

observation can be formalised, see e.g. Section 5.3.6.) Below, we list the identifications

that are of particular interest for this thesis:

52 Chapter 2. Preliminaries

Example 2.2.0.11. • The category SetP is isomorphic to CSL, the category of

complete join-semi lattices and functions that preserve all joins (see e.g. [77]).

• The category SetH is isomorphic to CABA, the category of complete atomic

Boolean algebras and Boolean algebra homomorphisms that preserve all meets

and all joins (see e.g. [76]).

• The category SetA is isomorphic to CDL, the category of completely distributive

lattices and functions that preserve all meets and all joins (see e.g. [76]).

• The category SetR is isomorphic to Z2-Vect, the category of vector spaces over

the unique two element field and linear maps (see e.g. [77]).

Coalgebras We conclude with a few words about coalgebras. As the name suggests,

coalgebras are dual to algebras. However, one typically refrains from requiring the

dual of the Eilenberg-Moore laws, and instead simply works with coalgebras over an

endofunctor (instead of a comonad). Over the last few years, the theory of coalgebras

has become increasingly popular as a unifying framework for the study of infinite

data types and state-based systems [132].

Definition 2.2.0.12 (Coalgebra). A coalgebra for an endofunctor F on a category

C is a pair (X, k) consisting of an object X and a morphism k : X → FX in C .

If (X, k) is a F -coalgebra and x ∈ X, we call the tuple (X, k, x) either a x-pointed

F -coalgebra, or an F -automaton.

One of the most basic examples of coalgebras in the category of sets and functions

are unpointed deterministic automata: they are of the type k : X → FX, where

FX = 2×XA and k pairs the final state function and the transition function assigning

a next state to each letter a ∈ A.

Crucial in the theory of coalgebras is the notion of homomorphism, which allows

to relate states of coalgebras of the same behaviour. A homomorphism f : (X, kX) →
(Y, kY) between F -coalgebras is a morphism f : X → Y satisfying kY ◦ f = Ff ◦ kX .
The category of F -coalgebras and homomorphisms is denoted by Coalg(F).

If it exists, the final object of this category is of particular importance.

2.2. Categories 53

Definition 2.2.0.13 (Final Coalgebra). An F -coalgebra (Ω, kΩ) is final if every F -

coalgebra (X, k) admits a unique homomorphism obs(X,k) : (X, k) → (Ω, kΩ).

The unique final coalgebra homomorphism can be understood as the observable

behaviour of a system. For example, for the functor FX = 2 × XA, the final F -

coalgebra is the set of all languages P(A󰂏) and the final coalgebra homomorphism

assigns to a state x of an unpointed deterministic automaton the language in P(A∗) it

accepts9 when given the initial state x. More generally, for any F with FX = B×XA,

the final F -coalgebra exists. Its underlying state-space is the set of generalised lan-

guages A∗ → B. We say that a x-pointed F -coalgebra (X, k, x) accepts the generalised

language obs(X,k)(x) ∈ BA∗
.

In the course of this thesis we will encounter situations that require us to to deploy

simultaneously both an algebraic and a coalgebraic perspective.

9For a deterministic automaton given by ε : X → 2 and δ : X → XA, acceptance is coinductively
defined as a function obs : X → 2A

∗
by obs(x)(ε) = ε(x) and obs(x)(av) = obs(δ(x)(a))(v).

54 Chapter 2. Preliminaries

Chapter 3

Learning Guarded Programs

Guarded Kleene Algebra with Tests (GKAT) is the fragment of Kleene Algebra with

Tests (KAT) that arises by replacing the union and iteration operations of KAT

with predicate-guarded variants. GKAT is more efficiently decidable than KAT and

expressive enough to model simple imperative programs, making it attractive for

applications to e.g. network verification. In this chapter, we further explore GKAT’s

automata theory, and present GL∗, an algorithm for learning the GKAT automaton

representation of a black-box, by observing its behaviour. A complexity analysis

shows that it is more efficient to learn a representation of a GKAT program with GL∗

than with Angluin’s existing L∗ algorithm. We implement GL∗ and L∗ in OCaml and

compare their performances on example programs.

3.1 Introduction

As hardware and software systems grow in size and complexity, practical and scalable

methods for verification tasks become increasingly important. Classical model check-

ing approaches to verification require a rich model of the system of interest, able to

express all its relevant behaviour. In reality such a model however is rarely available,

for instance, when the system comes in the form of a black-box with no access to the

source code, or the system is simply too complex for manual processing.

Automata learning, or regular inference, aims to automatically infer an automata

model by observing the behaviour of the system. The incremental approach has

55

56 Chapter 3. Learning Guarded Programs

been successfully applied to a wide range of verification tasks from finding bugs in

network protocols [21], reverse engineering smartcard reader for internet banking [42],

and industrial applications [61]. A comprehensive survey of the field can be found in

[153]. The majority of modern learning algorithms is based on Angluin’s L∗ algorithm

[14], which learns the unique minimal deterministic finite automaton (DFA) accepting

a given regular language, or more generally, the unique minimal Moore automaton

accepting a weighted language (Algorithm 1). In many situations, however, targeting

a DFA is not feasible, due to an explosion in the size of the state-space. Such cases

instead require types of models specifically tailored for their domain-specific purposes.

For instance, modern networking systems can operate on very large data sets,

making them very challenging to model. As a result, controlling, reasoning about,

or extending networks can be surprisingly difficult. One approach to modernise

the field that has recently gained popularity is Software Defined Networking (SDN)

[55]. Modern SDN programming languages, notably NetKAT [12], allow operators

to model their network and dynamically fine tune forwarding behaviour in response

to events such as traffic shifts. Globally, NetKAT is based on Kleene Algebra (KA)

[88], the sound and complete theory of regular expressions [84]. Locally, it incor-

porates Boolean algebra, the theory of predicates. Both logics have been unified in

the well developed theory of Kleene Algebra with Tests (KAT) [90], which subsumes

propositional Hoare logic and can be used to model standard imperative programming

constructs. The automata theory for NetKAT has been introduced in [57].

Verifying properties about realistic networks reduces in NetKAT to deciding the

behavioural equivalence of pairs of automata. Unfortunately, NetKAT’s decision pro-

cedure is PSPACE-complete, mainly due its foundations in KAT. As a consequence,

more efficiently decidable fragments of KAT have been considered. In [143] it was

hinted that the guarded fragment of KAT is notably more efficiently decidable than

the full language, while still remaining sufficiently expressive for networking purposes.

The idea has been taken further in [142], which formally introduced Guarded Kleene

Algebra with Tests (GKAT), a variation on KAT that arises by replacing the union

and iteration operations from KAT with guarded variants. In contrast to KAT, the

equational theory of GKAT is decidable in (almost) linear time. These properties

make GKAT a promising candidate for the foundations of a SDN programming lan-

3.1. Introduction 57

Algorithm 1 Angluin’s L∗ algorithm for Moore automata with input alphabet A
and output alphabet B

S,E ← {ε}
repeat

while T = (S,E, row : S ∪ S · A → BE) is not closed do
find t ∈ S · A with row(t) ∕= row(s) for all s ∈ S
S ← S ∪ {t}

end while
construct and submit m(T) to the teacher
if the teacher replies no with a counterexample z ∈ A∗ then

E ← E ∪ suf(z)
end if

until the teacher replies yes
return m(T)

guage that is more efficiently decidable than NetKAT.

In view of the potential applications of GKAT to the field of verification, this

chapter further investigates its automata theory. In detail, we make the following

contributions:

• For any GKAT automaton, we define a second automaton, which we call its

minimisation (Definition 3.4.2.1). We show that in the class of normal au-

tomata, the minimisation of an automaton is the unique size-minimal nor-

mal automaton accepting the same language (Corollary 3.4.2.10). We show

that the minimisation of a normal automaton is isomorphic to the automaton

that arises by identifying semantically equivalent pairs among reachable states

(Lemma 3.4.2.7), and that the minimisations of two language equivalent normal

automata are isomorphic (Corollary 3.4.2.9). Finally, we show that minimising

a normal GKAT automaton preserves important invariants such as the nesting

coequation (Corollary 3.4.2.8).

• We present GL∗, an active-learning algorithm (Algorithm 2) that incrementally

infers a GKAT automaton from a black-box by querying an oracle (Section 3.5).

We show that if the oracle is instantiated with the language accepted by a finite

normal GKAT automaton, then the algorithm terminates with its minimisation

in finite time (Theorem 3.5.2.6).

58 Chapter 3. Learning Guarded Programs

• We show that the semantics of GKAT automata (3.2) can be reduced to the well-

known semantics1 of Moore automata (3.6.1). That is, there exists a language

preserving embedding of GKAT automata into Moore automata (Lemma 3.6.1.1),

which maps the minimisation of a normal GKAT automaton to the language

equivalent minimal Moore automaton (Corollary 3.6.1.2). In consequence, GKAT

programs could thus, in principle, be also represented by Moore automata, in-

stead of GKAT automata.

• We present a complexity analysis which shows that for GKAT programs it is

more efficient to learn a GKAT automaton representation with GL∗ than a

Moore automaton representation with the L∗ algorithm (Proposition 3.6.2.1).

We implement GL∗ and L∗ in OCaml [122] and compare their performances on

example programs (Figure 3.6).

3.2 Overview of the Approach

In this section, we give an overview of this chapter through examples. We begin by

presenting Algorithm 1, a slight variation of Angluin’s L∗ algorithm for finite Moore

automata. We exemplify the algorithm by executing it for the language semantics

of a simple GKAT program. We then propose a new algorithm, which, instead of a

Moore automaton, infers a GKAT automaton.

3.2.1 L∗ Algorithm

Angluin’s L∗ algorithm learns the minimal DFA accepting a given regular language

[14]. The algorithm has since been modified and generalised for a broad class of

transition systems. The variation we present here step-wise infers the minimal Moore

automaton accepting a generalised language L : A∗ → B for an input alphabet A and

1In the language of Coalgebra, the semantics is given by the final coalgebra homomorphism for
the functor defined by FX = B ×XA, where A = At · Σ = {α · p | α ∈ At, p ∈ Σ} and B = 2At, for
finite sets Σ and At. The carrier of the final coalgebra for F is P((At · Σ)∗ · At), the set of guarded
string languages; the semantics of GKAT automata is given by the subclass of deterministic guarded
string languages.

3.2. Overview of the Approach 59

ε

ε 0b+ 0b

bp 0b+ 0b

bq 0b+ 0b

bp 0b+ 0b

bq 1b+ 1b

(a)

ε

ε 0b+ 0b

bq 1b+ 1b

bp 0b+ 0b

bq 0b+ 0b

bp 0b+ 0b

bqbp 0b+ 0b

bqbq 0b+ 0b

bqbp 0b+ 0b

bqbq 0b+ 0b

(b)

row(ε)

⇒ 0b+ 0b

row(bq)

⇒ 1b+ 1bbq

bp, bq, bp

bp, bq, bp, bq

(c)

ε bq bqbq

ε 0b+ 0b 1b+ 1b 0b+ 0b

bq 1b+ 1b 0b+ 0b 0b+ 0b

bp 0b+ 0b 1b+ 1b 0b+ 0b

bq 0b+ 0b 0b+ 0b 0b+ 0b

bp 0b+ 0b 0b+ 0b 0b+ 0b

bqbp 0b+ 0b 0b+ 0b 0b+ 0b

bqbq 0b+ 0b 0b+ 0b 0b+ 0b

bqbp 0b+ 0b 0b+ 0b 0b+ 0b

bqbq 0b+ 0b 0b+ 0b 0b+ 0b

(d)

ε bq bqbq

ε 0b+ 0b 1b+ 1b 0b+ 0b

bq 1b+ 1b 0b+ 0b 0b+ 0b

bq 0b+ 0b 0b+ 0b 0b+ 0b

bp 0b+ 0b 1b+ 1b 0b+ 0b

bp 0b+ 0b 0b+ 0b 0b+ 0b

bqbp 0b+ 0b 0b+ 0b 0b+ 0b

bqbq 0b+ 0b 0b+ 0b 0b+ 0b

bqbp 0b+ 0b 0b+ 0b 0b+ 0b

bqbq 0b+ 0b 0b+ 0b 0b+ 0b

bqbp 0b+ 0b 0b+ 0b 0b+ 0b

bqbq 0b+ 0b 0b+ 0b 0b+ 0b

bqbp 0b+ 0b 0b+ 0b 0b+ 0b

bqbq 0b+ 0b 0b+ 0b 0b+ 0b

(e)

row(ε)

⇒ 0b+ 0b

row(bq) ⇒ 0b+ 0b

row(bq)

⇒ 1b+ 1b

bp

bq

bp, bq, bp, bq

bp, bq, bp, bqbq, bp

(f)

Figure 3.1: An example run of Angluin’s L∗ algorithm for the target language
󰌻(while b do p); q󰌼

an output alphabet B [118]. The algorithm assumes the existence of a teacher (or

oracle), which can respond to two types of queries:

• Membership queries, consisting of a word w ∈ A∗, to which the teacher

returns the output L(w) ∈ B;

• Equivalence queries, consisting of a hypothesis Moore automatonH, to which

the teacher responds yes, if H accepts L, and no otherwise, providing a coun-

terexample z ∈ A∗ in the symmetric difference of L and the behaviour of H.

The algorithm incrementally builds an observation table, which contains partial infor-

mation about the language L obtained by performing membership queries. A table

consists of two parts: a top part, with rows indexed by a finite set S ⊆ A∗; and

a bottom-part, with rows ranging over S · A. Columns are indexed by a finite set

60 Chapter 3. Learning Guarded Programs

E ⊆ A∗. For any t ∈ S ∪ S · A and e ∈ E, the entry at row t and column e, denoted

by row(t)(e), is given by the output L(te) ∈ B. Note that the sets S and S · A can

intersect. In such a case, elements in the intersection are only shown in the top part.

We refer to a table as a tuple T = (S,E, row), leaving the language L implicit.

Given a table T , one can construct a Moore automaton m(T) = (X, δ, ε, x), where

X = {row(s) | s ∈ S} is a finite set of states; the transition function δ : X → XA is

given by δ(row(s), a) = row(sa); the output function ε : X → B satisfies ε(row(s)) =

row(s)(ε) (we abuse notation by writing ε both for the empty string and for the

output function); and x = row(ε) is the initial state. For m(T) to be well-defined,

the table T has to satisfy ε ∈ S and ε ∈ E, and two properties called closedness and

consistency. An observation table is closed if for all t ∈ S · A there exists an s ∈ S

such that row(t) = row(s). An observation table is consistent, if whenever s, s′ ∈ S

satisfy row(s) = row(s′), then row(sa) = row(s′a) for all a ∈ A. A table is consistent

in particular if the function row is injective.

The algorithm incrementally updates the table to satisfy those properties. If a

well-defined hypothesis m(T) can be constructed, the algorithm poses an equivalence

query to the teacher, and either terminates, or refines the hypothesis with a coun-

terexample z ∈ A∗. Since we respond to a negative equivalence query by adding the

suffixes2 of a counterexample to the set E (opposed to adding the prefixes of a coun-

terexample to the set S), rows will always be distinct, rendering consistency trivial3.

At all times, the set S is prefix-closed and the set E is suffix-closed4.

Example of execution

We now execute Angluin’s L∗ (Algorithm 1) for the target language

L = 󰌻(while b do p); q󰌼 = {bqb, bqb, bpbqb, bpbqb, ...} ⊆ (At · Σ)∗ · At, (3.1)

where At = {b, b} is a finite set of atoms and Σ = {p, q} is a finite set of actions. The

language L represents the semantics of a program that performs the action p while b

is true, and otherwise continues with q. It can be viewed as a generalised language

2The set suf(z) of suffixes for z ∈ A∗ is defined by suf(ε) = {ε} and suf(aw) = {aw} ∪ suf(w).
3This variation of L∗ has been introduced by Maler and Pnueli [108].
4A set X ⊆ A∗ is called suffix-closed, if suf(z) ⊆ X for all z ∈ X.

3.2. Overview of the Approach 61

󰁥L with input alphabet A = (At · Σ) and output alphabet B = 2At via currying. We

denote functions f ∈ B as formal sums
󰁓

α∈At f(α)α. A query to 󰁥L requires |At|
many queries to L.

Initially, the sets S and E are set to the singleton {ε}. We build the observation

table in Figure 3.1a. Since the row indexed by bq does not appear in the upper part,

i.e. differs from the row indexed by ε, the table is not closed. To resolve the closedness

defect we add bq to S. The observation table (Figure 3.1b) is now closed. We derive

from it the hypothesis depicted in Figure 3.1c. Next, we pose an equivalence query,

to which the oracle replies no and informs us that the word z = bqbq has been falsely

classified. Indeed, given z, the language accepted by the hypothesis outputs 1b+ 1b,

whereas (3.1) produces 0b + 0b. To respond to the counterexample z, we add its

suffixes to E. In this case, there are only the two suffixes bq and bqbq. The next

observation table (Figure 3.1d) again is not closed: the row indexed by e.g. bq does

not equal any of the two upper rows indexed by ε and bq. To resolve the closedness

defect we add bq to S, and obtain the table in Figure 3.1e. The observation table

is now closed. We derive from it the automaton in Figure 3.1f. Next, we pose an

equivalence query, to which the oracle replies yes.

3.2.2 GL∗ Algorithm

In this section, we propose a new algorithm (Algorithm 2) for learning GKAT program

representations, which we call GL∗. The new algorithm modifies Algorithm 1 by

addressing a number of observations.

First, we note that the Moore automaton in Figure 3.1f admits multiple transitions

to row(bq), a sink-state, which does not accept any words. Second, we observe that

languages induced by GKAT programs are deterministic5. Such languages are natu-

rally represented by GKAT automata, which keep some transitions implicit. Third,

in some cases6 the deterministic nature of the target language allows us to fill-in parts

of the observation table without membership queries. Fourth, the cells of the obser-

5Deterministic in the sense that, whenever two strings agree on the first n atoms, then they
agree on their first n actions (or lack thereof).

6For instance, the entries of the row indexed by bq in Figure 3.1d must all be zero, since the row
indexed by bp admits a non-zero entry.

62 Chapter 3. Learning Guarded Programs

Algorithm 2 The GL∗ algorithm for GKAT automata

S ← {ε}, E ← At
repeat

while T = (S,E, row : S ∪ S · (At · Σ) → 2E) is not closed do
find t ∈ S · (At · Σ) with row(t)(e) = 1 for some e ∈ E, but row(t) ∕= row(s)

for all s ∈ S
S ← S ∪ {t}

end while
construct and submit m(T) to the teacher
if the teacher replies no with a counterexample z ∈ (At · Σ)∗ · At then

E ← E ∪ suf(z)
end if

until the teacher replies yes
return m(T)

vation table are labelled by functions, each of which requires two membership queries

to (3.1); as a consequence, table extensions require an unfeasible amount of queries.

As before, we assume two finite sets, At and Σ, and a deterministic language

L ⊆ (At · Σ)∗ · At. The oracle of GL∗ can answer two types of queries: membership

queries consist of a word w ∈ (At · Σ)∗ · At, to which the oracle returns the output

L(w) ∈ 2; equivalence queries consist of a hypothesis GKAT automaton H, to which

the oracle responds yes, if H accepts L, and no otherwise, providing a counterexample

z ∈ (At · Σ)∗ · At in the symmetric difference of L and the language accepted by H.

An observation table in GL∗ consists of two parts: a top part, with rows indexed

by a finite set S ⊆ (At · Σ)∗; and a bottom-part, with rows ranging over S · At · Σ.
Columns range over a finite set E ⊆ (At ·Σ)∗ ·At. The entry of the observation table

at row t and column e, denoted by row(t)(e), is given by L(te) ∈ 2. We refer to a

table by T = (S,E, row) and leave the deterministic language L implicit.

Given a table T , we construct an automaton m(T) = (X, δ, x), where X =

{row(s) | s ∈ S} is a set of states; x = row(ε) is the initial state; and δ : X →
(2 + Σ×X)At evaluates δ(row(s))(α) to (p, row(sαp)), if there exists an e ∈ E and a

p ∈ Σ with row(sαp)(e) = 1; to 1, if row(s)(α) = 1; and to 0, otherwise.

Most of the properties a table needs to satisfy such that the hypothesis m(T) is

well-defined are guaranteed by the construction of Algorithm 2, since L is determin-

3.2. Overview of the Approach 63

b b
ε 0 0

bp 0 0
bq 0 0

bp 0 0

bq 1 1

(a)

b b
ε 0 0

bq 1 1

bp 0 0
bq 0 0

bp 0 0

bqbp 0 0

bqbq 0 0

bqbp 0 0

bqbq 0 0

(b)

row(ε)

⇒ b | 0

row(bq)

⇒ b, b | 1

b | q

(c)

b b bpbqb bqb
ε 0 0 1 1

bq 1 1 0 0

bp 0 0 1 1
bq 0 0 0 0

bp 0 0 0 0

bqbp 0 0 0 0

bqbq 0 0 0 0

bqbp 0 0 0 0

bqbq 0 0 0 0

(d)

row(ε) row(bq)

⇒ b, b | 1

b | p

b | q

(e)

Figure 3.2: An example run of GL∗ for the target language 󰌻(while b do p); q󰌼

istic. We only have to verify that the table is closed, that is, for all t ∈ S ·At ·Σ with

row(t)(e) = 1 for some e ∈ E, there exists some s ∈ S such that row(t) = row(s).

As in the case of L∗, the algorithm incrementally updates the table until closedness

is guaranteed. It then constructs a well-defined hypothesis, and poses an equivalence

query to the teacher. If the oracle replies yes, the algorithm terminates, and if the

response is no, it adds the suffixes7 of a counterexample z ∈ (At · Σ)∗ · At to E.

The differences between GL∗ and L∗ (instantiated for A = At ·Σ and B = 2At) are

essentially a consequence of currying. In the former case, the set E contains elements

of type (At ·Σ)∗ · At, and the table is filled with booleans in 2; in the latter case, the

set E contains elements of type (At ·Σ)∗, and the table is filled with functions At → 2.

This, however, does not mean that GL∗ is merely a shift in perspective: its new types

induce independent definitions, and termination needs to be established with novel

correctness proofs (Section 3.5). A thorough comparison is given in Section 3.6.

Example of execution

We now execute Algorithm 2 for the target language (3.1). Initially, S = {ε} and

E = At. We build the observation table in Figure 3.2a. Since the bottom row indexed

by bq contains a non-zero entry and differs from all upper rows (in this case, only

the row indexed by ε), the table is not closed. We resolve the closedness defect

by adding bq to S. The observation table (Figure 3.2b) is now closed. Note that

the row indexed by bq indicates that the words bqb and bqb are accepted. Since we

know the target language is deterministic, the last four rows of the table can be

7The set suf(z) of suffixes for z ∈ A∗ ·B is defined by suf(wb) = {vb | v ∈ suf(w)}.

64 Chapter 3. Learning Guarded Programs

filled with zeroes, without performing any membership queries. From Figure 3.2b we

derive the hypothesis depicted in Figure 3.2c. Next, we pose an equivalence query,

to which the oracle replies no and provides us with the counterexample z = bpbqb,

which is in the language (3.1), but not accepted by the hypothesis. We respond to the

counterexample by adding its suffixes bpbqb, bqb and b to E. The resulting observation

table is depicted in Figure 3.2d. The table is closed, since the only non-zero bottom

row is the one indexed by bp, which coincides with the upper row indexed by ε. Since

the row indexed by bp has a non-zero entry, the row indexed by bq can automatically

be filled with zeroes. We derive from Figure 3.2d the automaton in Figure 3.2e.

Finally, we pose an equivalence query, to which the oracle replies yes.

3.3 Guarded Kleene Algebra with Tests

This section recalls the syntax and semantics of Guarded Kleene Algebra with Tests

(GKAT). For most parts, we follow the relevant bits of the original presentation in

[142]. We additionally introduce a notion of similarity between GKAT automata.

3.3.1 Syntax

The syntax of GKAT is inductively built from disjoint non-empty sets of primitive

tests, T , and actions, Σ. In a first step, one generates from T a set of Boolean

expressions, BExpr. In a second step, the set is extended with Σ, to the full set of

GKAT expressions, Expr:

b, c, d ∈ BExpr ::= 0 | 1 | t ∈ T | b · c | b+ c | b

e, f, g ∈ Expr ::= p ∈ Σ | b ∈ BExpr | e · f | e+b f | e(b)

By a slight abuse of notation, we will sometimes write ef for e ·f and keep parenthesis

implicit, e.g. bc+ d should be read as (b · c) + d.

It is natural to view GKAT expressions as uninterpreted imperative programs.

Under this view, one makes the identifications depicted in Figure 3.3.

Readers familiar with KAT will notice that the grammar for GKAT is similar to

3.3. Guarded Kleene Algebra with Tests 65

0 ≡ false 1 ≡ true t ≡ t b · c ≡ b and c b+ c ≡ b or c

b ≡ not b p ≡ do p b ≡ assert b e · f ≡ e; f e(b) ≡ while b do e

e+b f ≡ if b then e else f

Figure 3.3: Identifying GKAT expressions with imperative programs

the one of KAT. It differs in that GKAT replaces KAT’s union (+) with the guarded

union (+b), and KAT’s iteration (e∗) with the guarded iteration (e(b)). GKAT’s

expressions can be encoded within KAT’s grammar via the standard embedding that

maps a conditional e+b f to be+ bf , and a while-loop e(b) to (be)∗b.

3.3.2 Semantics: Language Model

In this section, we recall the language semantics of GKAT, which assigns to a program

the traces it could produce once executed. Intuitively, an execution trace is a string

of the shape α0p1α1...pnαn. It can be thought of as a sequence of states αi a system

is in at point i in time, beginning with α0 and ending in αn, intertwined with actions

pi that transition from the state αi−1 to the state αi.

More formally, let ≡BA denote the equivalence relation between Boolean expres-

sions induced by the Boolean algebra axioms. The quotient BExpr/≡BA
, that is,

the free Boolean algebra on generators T , admits a natural preorder ≤ defined by

b ≤ c ⇔ b + c ≡BA c. The minimal nonzero elements with respect to this order are

called atoms, the set of which is denoted by At. If T = {t1, ..., tn} is finite, an atom

α ∈ At is of the form α = c1 · ... · cn with ci ∈ {ti, ti}.
A guarded string is an element of the set GS := At · (Σ · At)∗, or equivalently,

(At ·Σ)∗ ·At. The set of guarded strings without terminating atom is GS− := (At ·Σ)∗.
A guarded string language L ⊆ GS is deterministic [142, Def. 2.2], if, whenever

α1p1...αn−1pn−1αnv ∈ L and α1q1...αn−1qn−1αnw ∈ L, then pi = qi for all 1 ≤ i ≤
n − 1, and either v = w = ε, or v = pnv

′ and w = qnw
′ with pn = qn. The set of

deterministic guarded string languages is denoted by L .

Guarded strings can be partially composed via the fusion product defined by

vα ⋄ βw := vαw, if α = β, and undefined otherwise. The partial product lifts to a

66 Chapter 3. Learning Guarded Programs

x

y z ⇒ b, b | 1

b | p b | q

b | p
b | q

Figure 3.4: The Thompson-automaton Xp(b)q for T = {b} and Σ = {p, q}

total function on guarded languages by L ⋄K := {v ⋄ w | v ∈ L,w ∈ K}. The n-th

power of a guarded language is inductively defined by L0 := At and Ln+1 := Ln ⋄ L.
For B ⊆ At and B := At\B, the guarded sum and the guarded iteration of languages

are given by

L+B K := (B ⋄ L) ∪ (B ⋄K) L(B) := ∪n≥0(B ⋄ L)n ⋄B.

The language model of GKAT is given by the semantic function 󰌻−󰌼 : Expr → P(GS),

which is inductively defined as follows:

󰌻p󰌼 := {αpβ | α, β ∈ At} 󰌻b󰌼 := {α ∈ At | α ≤ b}

󰌻e · f󰌼 := 󰌻e󰌼 ⋄ 󰌻f󰌼 󰌻e+b f󰌼 := 󰌻e󰌼 +󰌻b󰌼 󰌻f󰌼 󰌻e(b)󰌼 := 󰌻e󰌼(󰌻b󰌼).

Equivalently, the language semantics of GKAT can be constructed by post-composing

the embedding of GKAT expressions into KAT expressions with the semantics of

KAT. The language 󰌻e󰌼 accepted by a GKAT program e is deterministic.

Example 3.3.2.1. Let tests and actions be defined by T := {b} and Σ := {p, q},
respectively. Then there exist only two atoms, At = {b, b}. The language model

assigns to p(b)q ≡ (while b do p); q the guarded deterministic language in (3.1).

3.3.3 Semantics: Automata Model

In this section, we recall the automata model of GKAT, the central subject of this

chapter. As before, we assume two finite sets of tests T and actions Σ, the former of

which induces a finite set of atoms, At.

Let G be the functor on the category of sets which is defined on objects by GX =

3.3. Guarded Kleene Algebra with Tests 67

(2 +Σ×X)At (where 2 = {0, 1}) and on morphisms in the usual way. A G-coalgebra

(cf. Definition 2.2.0.12) consists of a pair X = (X, δ), where X is a set called

state-space and δ : X → GX is a function called transition map. A G-coalgebra

homomorphism f : (X, δX) → (Y, δY) is a function f : X → Y that commutes with

the transition maps, δY ◦ f = Gf ◦ δX . More concretely [142, Def. 5.7.], f is a

G-coalgebra homomorphism, if for all α ∈ At, p ∈ Σ, and x, y ∈ X,

• if δX(x)(α) ∈ 2, then δY (f(x))(α) = δX(x)(α); and

• if δX(x)(α) = (p, y), then δY (f(x))(α) = (p, f(y)).

A G-automaton is a G-coalgebra X with a designated initial state x ∈ X. A ho-

momorphism f : (X , x) → (Y , y) between G-automata is a homomorphism between

the underlying G-coalgebras that maps initial state to initial state, f(x) = y.

For each state x ∈ X, given an input α ∈ At, a G-coalgebra either i) halts

and accepts, that is, satisfies δ(x)(α) = 1; ii) halts and rejects, that is, satisfies

δ(x)(α) = 0; or iii) produces an output p and moves to a new state y, that is, satisfies

δ(x)(α) = (p, y). Intuitively, for each state x ∈ X, a guarded string α0p1α1...pnαn is

accepted, if the G-coalgebra in state x produces the output p1...pn, halts and accepts.

Formally, one defines a function 󰌻−󰌼 : X → P(GS) as follows:

α ∈ 󰌻x󰌼 :⇔ δ(x)(α) = 1;

αpw ∈ 󰌻x󰌼 :⇔ ∃y ∈ X : δ(x)(α) = (p, y) and w ∈ 󰌻y󰌼.
(3.2)

A G-coalgebra is observable, if the function 󰌻−󰌼 is injective.

A guarded string w is accepted by x, if w ∈ 󰌻x󰌼. The language accepted by a

G-automaton, 󰌻X 󰌼, is the language accepted by its initial state 󰌻x󰌼. Every language

accepted by a G-automaton is deterministic [142, Thm. 5.8]. Conversely, one can

equip the set of deterministic languages with a G-coalgebra structure (L , δL) defined

by:

δL (L)(α) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

(p, (αp)−1L) if (αp)−1L ∕= ∅

1 if α ∈ L

0 otherwise

,

68 Chapter 3. Learning Guarded Programs

where (αp)−1L = {w ∈ GS | αpw ∈ L}. Note that δL (L) is well-defined because L

is deterministic. Since 󰌻L󰌼 = L for any L ∈ L [142, Thm. 5.8], every deterministic

language can be recognized by a G-automaton with possibly infinitely many states.

A G-coalgebra (X, δ) is normal, if it only transitions to live states, that is,

δ(x)(α) = (p, y) implies 󰌻y󰌼 ∕= ∅. For any G-automaton X one can construct a

language equivalent normal G-automaton 󰁦X [142, Lem. 5.6]. If X is normal, the

function 󰌻−󰌼 : X → P(GS) is the unique coalgebra homomorphism 󰌻−󰌼 : (X, δ) →
(L , δL) [142, Thm. 5.8].

Two states x, y ∈ X of a normal coalgebra accept the same language, 󰌻x󰌼 = 󰌻y󰌼, if
and only if they are bisimilar 8, x ≃ y, that is, there exists a binary relation R ⊆ X×X

with xRy, such that if x′Ry′, then the following two implications hold:

• if δ(x′)(α) ∈ 2, then δ(y′)(α) = δ(x′)(α); and

• if δ(x′)(α) = (p, x′′), then δ(y′)(α) = (p, y′′) and x′′Ry′′ for some y′′ ∈ X.

Bisimilarity is a symmetric relation and can be extended to two coalgebras by con-

structing a coalgebra that has the disjoint union of their state-spaces as state-space.

Using a construction that is reminiscent of Thompson’s construction for regular

expressions [150], it is possible to interpret a GKAT expression e as an automaton

Xe that accepts the same language [142]. Alternatively, one can use a construction

[142] that mirrors Kozen’s syntactic form of Brzozowski’s derivatives for KAT [91].

Example 3.3.3.1. The Thompson-automaton assigned to the expression p(b)q is de-

picted in Figure 3.4. It is normal and reachable, but not observable, since the states x

and y are bisimilar, x ≃ y, thus accept the same language, 󰌻x󰌼 = 󰌻y󰌼. It also is equiv-

alent to the expression by which it is generated, that is, it satisfies 󰌻Xp(b)q󰌼 = 󰌻p(b)q󰌼.

3.3.4 A Note on Similarity

In this section we briefly introduce a notion of similarity that is to bisimulation,

what a partial order is to equality. Our construction addresses the coalgebraic side

of the proposal to replace the primitive notion of equality (equivalence) of GKAT

8In Section 3.3.4 we introduce the notion of similarity, which is to bisimilarity what a partial
order is to equality.

3.3. Guarded Kleene Algebra with Tests 69

expressions with a partial order of GKAT expressions [142]. We acknowledge that

similarity has been studied more generally, for arbitrary coalgebras [24, 79, 69, 101].

Definition 3.3.4.1. Let X be a G-coalgebra. A simulation is a binary relation

R ⊆ X ×X, such that if xRy, then:

• if δ(x)(α) = 1, then δ(y)(α) = 1;

• if δ(x)(α) = (p, x′), then δ(y)(α) = (p, y′) and x′Ry′ for some y′ ∈ X.

States x and y are similar, x ≾ y, if there exists a simulation relating x to y.

The result below shows that similarity is more fundamental than bisimilarity, and

that the definition of the latter naturally arises from the former.

Lemma 3.3.4.2. x ≃ y if and only if x ≾ y and y ≾ x.

Proof. • Assume the bisimilarity x ≃ y is witnessed by some relation R. We show

that R witnesses the similarity x ≾ y. Clearly xRy by definition. Let x′Ry′ for

arbitrary x′, y′ ∈ X, then we find:

– If δ(x′)(α) = 1, then δ(y′) = 1 since R is a bisimulation.

– If δ(x′)(α) = (p, x′′), then δ(y′)(α) = (p, y′′) and x′′Ry′′ for some y′′ ∈ X,

since R is a bisimulation.

Similarly, we show that the reverse relation Rr witnesses the similarity y ≾ x.

Clearly yRrx, since by construction xRy. Let y′Rrx′, i.e. x′Ry′, for arbitrary

x′, y′ ∈ X, then we find:

– If δ(y′)(α) = 1, then δ(x′)(α) = 1, since as R is a bisimulation we could

otherwise falsely deduce δ(y′)(α) = 0 or δ(y′)(α) ∕∈ 2.

– If δ(y′)(α) = (p, y′′), then δ(x′)(α) = (p, x′′) with y′′Rrx′′, i.e. x′′Ry′′. In-

deed, since R is a bisimulation, if δ(x′)(α) ∈ 2, it falsely follows δ(y′)(α) ∈
2, and if δ(x′)(α) = (q, x′′), it follows δ(y′)(α) = (q, y′′′) with x′′Ry′′′, as R

is a bisimulation. It remains to observe (p, y′′) = δ(y′)(α) = (q, y′′′), which

implies p = q and y′′ = y′′′.

70 Chapter 3. Learning Guarded Programs

• Assume x ≾ y and y ≾ x are witnessed by relations R1 ⊆ X × X and R2 ⊆
X×X, respectively. We define R := R1∩Rr

2, and show that R is a bisimulation

witnessing x ≃ y. Clearly xR1y and xRr
2y, i.e. xRy. Thus let x′Ry′ for arbitrary

x′, y′ ∈ X, then we find:

– If δ(x′)(α) = 0, then δ(y′)(α) = 0. Indeed, if δ(y′)(α) = 1 or δ(y′)(α) ∕∈ 2,

we could falsely deduce δ(x′)(α) = 1 or δ(x′)(α) ∕∈ 2, as y′R2x
′, and R2 is

a simulation.

– If δ(x′)(α) = 1, then δ(y′)(α) = 1, since x′R1y
′, and R1 is a simulation.

– If δ(x′)(α) = (p, x′′), then (i) δ(y′)(α) = (p, y′′) with x′′R1y
′′, since x′R1y

′,

and R1 is a simulation; and (ii) y′′R2x
′′, since y′R2x

′ implies δ(x′)(α) =

(p, x′′′) = (p, x′′) for y′′R2x
′′′. Thus we find by definition of R that x′′Ry′′.

Lemma 3.3.4.3. If x ≾ y then 󰌻x󰌼 ⊆ 󰌻y󰌼.

Proof. The proof is similar to the one of its bisimilar counterpart [142, Lemma 5.2].

We prove w ∈ 󰌻x󰌼 implies w ∈ 󰌻y󰌼 for all w ∈ GS by induction on the length of w.

• For the induction base, let w = α, then:

α ∈ 󰌻x󰌼 ⇔ δ(x)(α) = 1 (Definition of 󰌻−󰌼)
⇒ δ(y)(α) = 1 (x ≾ y)

⇔ α ∈ 󰌻y󰌼 (Definition of 󰌻−󰌼)

• For the induction step, let w = αpv, then we derive:

αpv ∈ 󰌻x󰌼 ⇔ δ(x)(α) = (p, x′), v ∈ 󰌻x′󰌼 (Definition of 󰌻−󰌼)
⇒ δ(y)(α) = (p, y′), v ∈ 󰌻y′󰌼 (x ≾ y, IH)

⇔ αpv ∈ 󰌻y󰌼 (Definition of 󰌻−󰌼)

Lemma 3.3.4.4. Let L1, L2 ∈ L , then L1 ⊆ L2 iff L1 ≾ L2 in (L , δL).

3.3. Guarded Kleene Algebra with Tests 71

Proof. Lemma 3.3.4.3 shows that L1 ≾ L2 implies L1 = 󰌻L1󰌼 ⊆ 󰌻L2󰌼 = L2.

Conversely, we show that ⊆ is a simulation. Assume L1 ⊆ L2, then we compute:

δL (L1)(α) = 1 ⇔ α ∈ L1 (Definition of δL)

⇒ α ∈ L2 (L1 ⊆ L2)

⇔ δL (L2)(α) = 1 (Definition of δL)

Moreover, we find:

δL (L1)(α) = (p, L1) ⇔ ∅ ∕= L1 = (αp)−1L1 (Definition of δL)

⇒ ∅ ∕= L1 = (αp)−1L1 ⊆ (αp)−1L2 = L2 (L1 ⊆ L2)

⇔ δL (L2)(α) = (p, L2), L1 ⊆ L2 (Definition of δL)

Corollary 3.3.4.5. Let X be a normal G-coalgebra, then x ≾ y iff 󰌻x󰌼 ⊆ 󰌻y󰌼.

Proof. The proof is similar to the one of its bisimilar counterpart [142, Corollary 5.9].

From Lemma 3.3.4.3 it follows that x ≾ y implies 󰌻x󰌼 ⊆ 󰌻y󰌼.
Conversely, assume 󰌻x󰌼 ⊆ 󰌻y󰌼. We define a relation R := {(s, t) ∈ X ×X | 󰌻s󰌼 ⊆

󰌻t󰌼}. In order to show x ≾ y it is sufficient to prove that R is a simulation. Since X

is normal, 󰌻−󰌼 is a G-coalgebra homomorphism.

• Suppose sRt and δ(s)(α) = 1. As 󰌻−󰌼 is a G-coalgebra homomorphism it follows

δL (󰌻s󰌼)(α) = 1. Since 󰌻s󰌼 ⊆ 󰌻t󰌼 implies 󰌻s󰌼 ≾ 󰌻t󰌼 by Lemma 3.3.4.4, we thus

can deduce δL (󰌻t󰌼)(α) = 1. Since 󰌻−󰌼 is a G-coalgebra homomorphism, we can

conclude δ(t)(α) = 1.

• Suppose sRt and δ(s)(α) = (p, s′). Since 󰌻−󰌼 is a G-coalgebra homomor-

phism it follows δL (󰌻s󰌼)(α) = (p, 󰌻s′󰌼). Since 󰌻s󰌼 ⊆ 󰌻t󰌼 implies 󰌻s󰌼 ≾ 󰌻t󰌼 by

Lemma 3.3.4.4, we deduce δL (󰌻t󰌼)(α) = (p, L) for some L ∈ L with 󰌻s′󰌼 ≾ L

in L . Since 󰌻−󰌼 is a G-coalgebra homomorphism, it follows L = 󰌻t′󰌼 with

δ(t)(α) = (p, t′). Thus we have 󰌻s′󰌼 ≾ 󰌻t′󰌼, or equivalently 󰌻s′󰌼 ⊆ 󰌻t′󰌼 by

Lemma 3.3.4.4. The latter implies s′Rt′ by definition of R. Thus we find

δ(t)(α) = (p, t′) and s′Rt′.

72 Chapter 3. Learning Guarded Programs

3.4 The Minimal Representation m(X)

The automaton Xe assigned to an expression e by the Thompson construction is not

always the most efficient representation of the language 󰌻e󰌼. For instance, as seen in

Example 3.3.3.1, the Thompson-automaton Xp(b)q in Figure 3.4 contains redundant

structure, since its states x and y exhibit the same behaviour. In this section, we show

that any G-automaton X admits an equivalent minimal representation, m(X).

3.4.1 Reachability

We begin by formally defining what it means for a state of a G-automaton to be reach-

able, and show that restricting an automaton to its reachable states leaves important

properties invariant.

Definition 3.4.1.1. Let (X, δ) be a G-coalgebra. We write → ⊆ X × GS− ×X for

the smallest relation satisfying:

x
ε−→ x

δ(x)(α) = (p, y)

x
αp−→ y

x
α1p1...αn−1pn−1−−−−−−−−−→ y , y

αnpn−−−→ z

x
α1p1...αnpn−−−−−−→ z

. (3.3)

The states reachable from x ∈ X are r(x) := {y ∈ X | ∃w ∈ GS− : x
w−→ y}, and their

witnesses are R(x) := {w ∈ GS− | ∃xw ∈ X : x
w−→ xw}.

The following result shows that a state reached by a word is uniquely defined.

Lemma 3.4.1.2. If x
w−→ x1

w and x
w−→ x2

w, then x1
w = x2

w.

Proof. We show the statement by induction on the length of w ∈ GS−:

• The induction base w = ε follows from the base case of (3.3): x
ε−→ xi

w iff xi
w = x

for i = 1, 2.

• For the induction step let w = vαp for some v ∈ GS−. By (3.3) there exist

x1
v, x

2
v ∈ X such that x

v−→ x1
v

αp−→ x1
w and x

v−→ x2
v

αp−→ x2
w. From the induction

hypothesis it follows x1
v = x2

v. Thus, by (3.3), (p, x1
w) = δ(x1

v)(α) = δ(x2
v)(α) =

(p, x2
w), which yields x1

w = x2
w.

3.4. The Minimal Representation m(X) 73

Given a G-coalgebra (X, δ), we call a subset A ⊆ X δ-invariant, if y ∈ A and

δ(y)(α) = (p, z), then z ∈ A. In such a situation, we write X A = (A, δA) for the

well-defined restriction of X = (X, δ) to A.

We denote the sub-automaton one obtains by restricting a G-automaton X =

(X, δ, x) to the δ-invariant set of states reachable from the initial state x ∈ X by

r(X) := X r(x), and call an automaton reachable, if X = r(X). Following [65, Def.

15], we call a normal, reachable, and observable automaton minimal.

The set R(x) of words witnessing the reachability of states in X = (X, δ, x) can

be equipped with a G-automaton structure R(X) := (R(x), ∂, ε), where ∂(w)(α) =

(p, wαp), if δ(xw)(α) = (p, xwαp) for some xwαp ∈ X, and ∂(w)(α) = δ(xw)(α) oth-

erwise. The automaton r(X) can then be recovered as the image of the automata

homomorphism f : R(X) → X defined by f(w) = xw. In other words, there exists

an epi-mono factorisation R(X) ↠ r(X) ↩→ X .

We conclude with a list of important properties preserved by restricting an au-

tomaton to its reachable states. Among those properties are well-nestedness [142]

and satisfing the nesting coequation [135]. We refer the reader to Section 4.7 for a

high-level comparison between the two notions.

The definition of well-nestedness requires the following construction.

Definition 3.4.1.3 ([142]). Let X = (X, δ) be a G-coalgebra. The uniform contin-

uation of A ⊆ X by h ∈ G(X) is the G-coalgebra X [A, h] = (X, δ[A, h]), where:

δ[A, h](x)(α) =

󰀻
󰀿

󰀽
h(α) if x ∈ A, δ(x)(α) = 1

δ(x)(α) else
.

Further let X +Y := (X+Y, δX + δY) be the disjoint union of automata, where

δX + δY (x)(α) = δX (x)(α), if x ∈ X, and δY (x)(α) otherwise.

Definition 3.4.1.4 ([142]). The class of well-nested G-coalgebras is defined as fol-

lows:

• If X = (X, δ) has no transitions, i.e. if δ : X → 2At, then X is well-nested.

• If X and Y are well-nested and h ∈ G(X + Y), then (X + Y)[X, h] is well-

nested.

74 Chapter 3. Learning Guarded Programs

While the following results are stated in terms of arbitrary δ-invariant subsets, we

are particularly interested in r(x), the subset of states reachable by an initial state x.

Lemma 3.4.1.5. The restriction of a well-nested G-coalgebra to a δ-invariant subset

is well-nested.

Proof. We show the statement by induction on the well-nested structure of X . As

before, we write X A = (A, δA) for the well-defined restriction of X = (X, δ) to a

δ-invariant subset A ⊆ X.

• For the induction base assume that X = (X, δ) satisfies δ : X → 2At, and

A ⊆ X is a δ-invariant set. Then clearly the restriction is of type δA : A → 2At,

i.e. X A = (A, δA) is well-nested.

• For the induction step let Y = (Y, δY) and Z = (Z, δZ) be well-nested G-

coalgebras, h ∈ G(Y + Z), and X = (Y + Z, (δY + δZ)[Y, h]). Moreover let

A ⊆ Y +Z be a (δY + δZ)[Y, h]-invariant set. We would like to show that X A

is well-nested. The induction hypothesis reads:

– for all δY -invariant sets B ⊆ Y , the subcoalgebra Y B = (B, (δY)B) is

well-nested;

– for all δZ -invariant sets C ⊆ Z, the subcoalgebra Z C = (C, (δZ)C) is

well-nested.

We begin by showing that A∩Y ⊆ Y and A∩Z ⊆ Z are δY - and δZ -invariant

sets, respectively. Let δY (x)(α) = (p, y) for x ∈ A ∩ Y and y ∈ Y . Then by

definition

(δY + δZ)[Y, h](x)(α) = δY (x)(α) = (p, y),

which by (δY + δZ)[Y, h]-invariance of A implies y ∈ A. It hence follows y ∈
A ∩ Y . Analogously one dedues that A ∩ Z is δZ -invariant. Thus Y A∩Y =

(A∩Y, (δY)A∩Y) and Z A∩Z = (A∩Z, (δZ)A∩Z) are well-defined, and moreover,

by the induction hypothesis they are well-nested.

We observe the equality A = A ∩ Y + A ∩ Z, which follows from A ⊆ Y + Z,

3.4. The Minimal Representation m(X) 75

and define h ∈ G(A ∩ Y + A ∩ Z) = G(A) by:

h(α) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

1 if h(α) = 1

(p, x) if h(α) = (p, x), x ∈ A

0 else

(3.4)

It follows X A = (A∩ Y +A∩Z, ((δY)A∩Y + (δZ)A∩Z)[A∩ Y, h]), since for any

x ∈ A it holds:

((δY + δZ)[Y, h])A(x)(α)

=

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

δY (x)(α) x ∈ A ∩ Y, δY (x)(α) ∕= 1

h(α) x ∈ A ∩ Y, δY (x)(α) = 1

δZ (x)(α) x ∈ A ∩ Z

=

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

δY (x)(α) x ∈ A ∩ Y, δY (x)(α) ∕= 1

1 x ∈ A ∩ Y, δY (x)(α) = 1, h(α) = 1

0 x ∈ A ∩ Y, δY (x)(α) = 1, h(α) = 0

(p, x′) x ∈ A ∩ Y, δY (x)(α) = 1, h(α) = (p, x′)

δZ (x)(α) x ∈ A ∩ Z

(󰂏)
=

󰀻
󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰁁󰀽

δY (x)(α) x ∈ A ∩ Y, δY (x)(α) ∕= 1

1 x ∈ A ∩ Y, δY (x)(α) = 1, h(α) = 1

0 x ∈ A ∩ Y, δY (x)(α) = 1, h(α) = 0

(p, x′) x ∈ A ∩ Y, δY (x)(α) = 1, h(α) = (p, x′)

δZ (x)(α) x ∈ A ∩ Z

=

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

(δY)A∩Y (x)(α) x ∈ A ∩ Y, (δY)A∩Y (x)(α) ∕= 1

h(α) x ∈ A ∩ Y, (δY)A∩Y (x)(α) = 1

(δZ)A∩Z(x)(α) x ∈ A ∩ Z

= ((δY)A∩Y + (δZ)A∩Z)[A ∩ Y, h](x)(α),

76 Chapter 3. Learning Guarded Programs

where we use for (󰂏) that ((δY + δZ)[Y, h])A(x)(α) = (p, x′) for x ∈ A, implies

x′ ∈ A, as A is (δY + δZ)[Y, h]-invariant.

Restricting to a δ-invariant subset not only preserves well-nestedness, but also

language semantics.

Lemma 3.4.1.6. Let X A = (A, δA) be the restriction of a G-coalgebra X = (X, δ)

to a δ-invariant subset A ⊆ X. Then 󰌻a󰌼X = 󰌻a󰌼X A for all a ∈ A.

Proof. We show w ∈ 󰌻a󰌼X iff w ∈ 󰌻a󰌼X A for all a ∈ A and w ∈ GS by induction on

the length of w.

• For the induction base assume w = α, then we deduce:

α ∈ 󰌻a󰌼X ⇔ δ(a)(α) = 1 (Definition of 󰌻−󰌼)
⇔ δA(a)(α) = 1 (a ∈ A)

⇔ α ∈ 󰌻a󰌼X A (Definition of 󰌻−󰌼).

• For the induction step let w = αpv, then we find:

αpv ∈ 󰌻a󰌼X ⇔ ∃x ∈ X : δ(a)(α) = (p, x), v ∈ 󰌻x󰌼X (Definition of 󰌻−󰌼)
⇔ ∃b ∈ A : δ(a)(α) = (p, b), v ∈ 󰌻b󰌼X (a ∈ A, δ-inv)

⇔ ∃b ∈ A : δA(a)(α) = (p, b), v ∈ 󰌻b󰌼X A (a, b ∈ A, IH)

⇔ αpv ∈ 󰌻a󰌼X A (Definition of 󰌻−󰌼).

In consequence, we immediately obtain that restricting to a δ-invariant subset

preserves normality.

Lemma 3.4.1.7. The restriction of a normal G-coalgebra to a δ-invariant subset is

normal.

Proof. Let X = (X, δ) be a normal G-coalgebra and A ⊆ X a δ-invariant subset.

We write X A = (A, δA) for the restriction of X to A. Assume for a, b ∈ A we have

3.4. The Minimal Representation m(X) 77

δA(a)(α) = (p, b). Since a ∈ A, we have δ(a)(α) = (p, b), which by normality of X

implies ∅ ∕= 󰌻b󰌼X . From b ∈ A and Lemma 3.4.1.6 we thus can deduce ∅ ∕= 󰌻b󰌼X A .

We will conclude this section with a summarising result. We say that a G-

automaton X satisfies the nesting coequation, if the final coalgebra homomorphism

obsX = 󰌻·󰌼 : X → L factors through the coequation {󰌻e󰌼 | e ∈ Expr} – that is, for

any x ∈ X there exists an expression ex ∈ Expr such that 󰌻ex󰌼 = 󰌻x󰌼. The interested

reader will find more details in [46, 135]. For our purposes it is sufficient to know that

the class of all G-automata satisfying the nesting coequation forms a covariety [135].

Covarieties are a categorical dualization of varieties, which are well-known from uni-

versal algebra (cf. Section 5.3.6). Birkhoff’s famous HSP theorem states that varieties

are closed under homomorphic images (H), subalgebras (S), and products (P) [29].

Covarieties enjoy similarly desirable properties: they are closed under homomorphic

images, subcoalgebras, and coproducts [46].

Proposition 3.4.1.8. Let X be a G-automaton, then r(X) is well-nested, normal,

or satisfies the nesting coequation, whenever X does. Moreover, r(X) accepts the

same language as X .

Proof. Let us write X = (X, δ, x). From (3.3) it is immediate that r(x) ⊆ X is δ-

invariant. Thus, Lemma 3.4.1.5 and Lemma 3.4.1.7, respectively, imply that r(X) =

(r(x), δr(x), x) is well-nested, or normal, whenever X is. From Lemma 3.4.1.6 it

further follows

󰌻r(X)󰌼 = 󰌻x󰌼r(X) = 󰌻x󰌼X = 󰌻X 󰌼.

Since the class of all G-automata satisfying the nesting coequation forms a covariety,

it is closed under subautomata. As there exists an epi-mono factorisation

R(X) ↠ r(X) ↩→ X

the automaton r(X) thus satisfies the nesting coequation, whenever X does.

78 Chapter 3. Learning Guarded Programs

3.4.2 Minimality

Recall that the state-space of the minimal DFA for a regular language consists of the

equivalence classes of the Myhill-Nerode equivalence relation [120].

Similarly, we define the state-space of the minimisation of a GKAT automaton X

as the equivalence classes of the equivalence relation ≡󰌻X 󰌼 on GS−, defined for any

guarded string language L ⊆ GS by:

v ≡L w :⇔ ∀u ∈ GS : vu ∈ L iff wu ∈ L. (3.5)

Let v−1L = {u ∈ GS | vu ∈ L} be the derivative of L with respect to v. Then

two words v, w are equivalent with respect to ≡L iff the derivatives v−1L and w−1L

coincide.

Definition 3.4.2.1. The minimisation of a G-automaton X = (X, δ, x) is m(X) :=

({w−1󰌻X 󰌼 | w ∈ R(x)}, ∂, 󰌻X 󰌼) with:

∂(L)(α) :=

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

(p, (αp)−1L) if (αp)−1L ∕= ∅

1 if α ∈ L

0 otherwise

, (3.6)

for L ∈ {w−1󰌻X 󰌼 | w ∈ R(x)}.

A few remarks on the well-definedness of above definition are in order. The lan-

guage accepted by a G-automaton is deterministic, and taking the derivative of a

language preserves its deterministic nature. Thus only one of the three cases in (3.6)

occurs. Since ε ∈ R(x) and ε−1L = L, the initial state of the minimisation is well-

defined. Transitioning to a new state is well-defined since v−1(w−1L) = (wv)−1L.

It is not hard to see that on a high-level the minimisation can be recovered as the

image of the final automata homomorphism 󰌻−󰌼 : R(X) → L, which, as the result

below shows, satisfies 󰌻w󰌼R(X) = w−1󰌻X 󰌼.

Lemma 3.4.2.2. Let X be a G-automaton with initial state x ∈ X. Then 󰌻w󰌼R(X) =

w−1󰌻X 󰌼 for all w ∈ R(x).

3.4. The Minimal Representation m(X) 79

Proof. We prove u ∈ 󰌻w󰌼R(X) iff u ∈ w−1󰌻X 󰌼 for all u ∈ GS and w ∈ R(x) by

induction on the length of u.

• For the induction base assume u = α, then we find:

α ∈ 󰌻w󰌼R(X) ⇔ ∂(w)(α) = 1 (Definition of 󰌻−󰌼)
⇔ δ(xw)(α) = 1 (Definition of ∂)

⇔ α ∈ 󰌻xw󰌼X (Definition of 󰌻−󰌼)
⇔ wα ∈ 󰌻X 󰌼 (Definition of 󰌻−󰌼)
⇔ α ∈ w−1󰌻X 󰌼 (Definition of w−1󰌻X 󰌼)

• For the induction step let u = αpv, then it follows:

αpv ∈ 󰌻w󰌼R(X)

⇔ ∂(w)(α) = (p, wαp), v ∈ 󰌻wαp󰌼R(X) (Definition of 󰌻−󰌼)
⇔ δ(xw)(α) = (p, xwαp), v ∈ (wαp)−1󰌻X 󰌼 (Definition of ∂, IH)

⇔ δ(xw)(α) = (p, xwαp), v ∈ 󰌻xwαp󰌼X (Definition of (wαp)−1󰌻X 󰌼)
⇔ αpv ∈ 󰌻xw󰌼X (Definition of 󰌻−󰌼)
⇔ αpv ∈ w−1󰌻X 󰌼 (Definition of w−1󰌻X 󰌼)

In other words, there exists an epi-mono factorisation R(X) ↠ m(X) ↩→ L.

Properties of m(X)

In this section we prove properties of m(X), which one would expect to hold by a

minimisation construction. We begin by showing that minimising a normal automa-

ton results in a reachable acceptor.

Lemma 3.4.2.3. Let X be a normal G-automaton with initial state x ∈ X. Then

󰌻X 󰌼 w−→ w−1󰌻X 󰌼 in m(X) for all w ∈ R(x). In particular, m(X) is reachable.

Proof. We prove the statement by induction on the length of w ∈ R(x):

80 Chapter 3. Learning Guarded Programs

• For the induction base, let w = ε, then 󰌻X 󰌼 ε−→ 󰌻X 󰌼 = ε−1󰌻X 󰌼 by the base

case of (3.3).

• In the induction step, let w = vαp with v ∈ GS−. By the definition of reacha-

bility, v ∈ R(x). From the induction hypothesis we deduce 󰌻X 󰌼 v−→ v−1󰌻X 󰌼 in

m(X). The normality of X implies the inequality (αp)−1(v−1󰌻X 󰌼) ∕= ∅. From
(3.6) it thus follows v−1󰌻X 󰌼 αp−→ (αp)−1(v−1󰌻X 󰌼) = w−1󰌻X 󰌼. We conclude

󰌻X 󰌼 w=vαp−−−−→ w−1󰌻X 󰌼 by (3.3).

The next result proves that minimisation preserves language semantics.

Lemma 3.4.2.4. Let X be a G-automaton, then 󰌻L󰌼 = L for all L in m(X). In

particular, 󰌻m(X)󰌼 = 󰌻X 󰌼.

Proof. We show v ∈ 󰌻w−1󰌻X 󰌼󰌼 iff v ∈ w−1󰌻X 󰌼 for all v ∈ GS, w ∈ R(x), by induction

on the length of v:

• For the induction base, let v = ε. Then we can compute:

α ∈ 󰌻w−1󰌻X 󰌼󰌼 ⇔ ∂(w−1󰌻X 󰌼)(α) = 1 (Definition of 󰌻−󰌼)
⇔ α ∈ w−1󰌻X 󰌼 (Definition of ∂)

• In the induction step, let v = αpu. Then we have the following equivalences:

αpu ∈ 󰌻w−1󰌻X 󰌼󰌼 ⇔ u ∈ 󰌻(wαp)−1󰌻X 󰌼󰌼 (Definition of 󰌻−󰌼, (3.6))
⇔ u ∈ (wαp)−1󰌻X 󰌼 (IH)

⇔ wαpu ∈ 󰌻X 󰌼 (Definition of (−)−1󰌻X 󰌼)
⇔ αpu ∈ w−1󰌻X 󰌼 (Definition of (−)−1󰌻X 󰌼)

In particular, 󰌻m(X)󰌼 = 󰌻󰌻X 󰌼󰌼 = 󰌻ε−1󰌻X 󰌼󰌼 = ε−1󰌻X 󰌼 = 󰌻X 󰌼.

An immediate consequence of above statement is that the states of the minimi-

sation can be distinguished by their observable behaviour, that is, different states

accept different languages. Another implication of Lemma 3.4.2.4 is the normality of

the minimisation: all states are live.

3.4. The Minimal Representation m(X) 81

R(X) r(X)

X

m(X) L

π

(a) The morphism π as unique diag-
onal

e f

Xe Xe

󰁦Xe
󰁦Xf

m(󰁦Xe) m(󰁦Xf)
∼=

(b) 󰌻e󰌼 = 󰌻f󰌼 iff m(󰁦Xe) and m(󰁦Xf) are isomorphic

Figure 3.5: A high-level view of the notions introduced in Section 3.4.2

Corollary 3.4.2.5. Let X be a G-automaton, then m(X) is normal and observable.

Proof. • By Lemma 3.4.2.4, 󰌻L1󰌼 = 󰌻L2󰌼 implies L1 = L2, which shows that 󰌻−󰌼
is injective. By definition, this proves that m(X) is observable.

• Assume ∂(L1)(α) = (p, L2), then L2 = (αp)−1L1 ∕= ∅ by (3.6). It thus follows

from Lemma 3.4.2.4 that 󰌻L2󰌼 = L2 ∕= ∅, which shows thatm(X) is normal.

Since m(X) is normal, reachable, and observable, if X is normal, it is, by our

definition, minimal (cf. [65, Def. 15]). Its size-minimality among normal automata

language equivalent to X follows from the abstract definition, cf. Corollary 3.4.2.10.

Identifying m(X)

In this section, we identify the minimisation of a normal G-automaton with an al-

ternative, but equivalent, construction. In consequence, we are able to derive that

the minimisation of a normal automaton is size-minimal among language equivalent

normal automata and preserves the nesting coequation. We begin by observing its

universality in the following sense.

Proposition 3.4.2.6. Let X and Y be normal G-automata with 󰌻X 󰌼 = 󰌻Y 󰌼, and
y ∈ Y the initial state of Y . Then π : r(Y) → m(X) with π(z) = w−1

z 󰌻X 󰌼, for
y

wz−→ z in Y , is a (surjective) G-automata homomorphism, uniquely defined.

Proof. We have to show that π is well-defined, surjective, preserves initial states, is

a G-coalgebra homomorphism, and is unique. In this order:

82 Chapter 3. Learning Guarded Programs

• Let z ∈ r(y), then by definition there exists at least one w1 ∈ R(y) such that

y
w1−→ z in Y . Since Y is normal, we have w−1

1 󰌻X 󰌼 = w−1
1 󰌻Y 󰌼 ∕= ∅. Hence

there exists some z′ ∈ X, such that x
w1−→ z′ in X , that is, w1 ∈ R(x), where

x is the initial state of X . Assume there exists a second w2 ∈ R(y), such that

y
w2−→ z in Y . Then we have:

w1u ∈ 󰌻X 󰌼 ⇔ w1u ∈ 󰌻Y 󰌼 (󰌻X 󰌼 = 󰌻Y 󰌼)
⇔ u ∈ 󰌻z󰌼 (Definition of 󰌻−󰌼)
⇔ w2u ∈ 󰌻Y 󰌼 (Definition of 󰌻−󰌼)
⇔ w2u ∈ 󰌻X 󰌼 (󰌻X 󰌼 = 󰌻Y 󰌼)

for all u ∈ GS. In other words, w1 ≡󰌻X 󰌼 w2, or, equivalently, w−1
1 󰌻X 󰌼 =

w−1
2 󰌻X 󰌼. Thus π is a well-defined function.

• Let w ∈ R(x), then by definition there exists xw ∈ X with x
w−→ xw in X . Since

X is normal, w−1󰌻Y 󰌼 = w−1󰌻X 󰌼 ∕= ∅, i.e. y
w−→ yw in Y , for some yw ∈ Y .

Thus, by construction, π(yw) = w−1󰌻X 󰌼, which shows that π is surjective.

• Initial states are preserved since by (3.3) we have y
ε−→ y, which by definition of

π implies π(y) = ε−1󰌻X 󰌼 = 󰌻X 󰌼.

• π is a G-coalgebra homomorphism:

– Let δY (z)(α) = 0, then δm(X)(π(z))(α) ∕= 1, since otherwise wzα ∈ 󰌻X 󰌼 =
󰌻Y 󰌼 by the definition of δm(X), which would imply the contradiction 1 =

δY (z)(α) = 0. Assume δm(X)(π(z))(α) = (p, (wzαp)
−1󰌻X 󰌼). By definition

of δm(X) there exists some v ∈ GS, such that wzαpv ∈ 󰌻X 󰌼 = 󰌻Y 󰌼. Hence
it follows δY (z)(α) ∕= 0 by the definition of 󰌻−󰌼, which is a contradiction.

We can thus conclude δm(X)(π(z))(α) = 0

– Let δY (z)(α) = 1, then wzα ∈ 󰌻Y 󰌼 = 󰌻X 󰌼 by the definition of 󰌻−󰌼. From
the definition of δm(X), it follows δm(X)(π(z))(α) = 1.

– Let δY (z)(α) = (p, z′), then, by normality of Y , there exists some v ∈
󰌻z′󰌼 ∕= ∅. The latter implies wzαpv ∈ 󰌻Y 󰌼 = 󰌻X 󰌼. By the definitions of

δm(X) and wz′ , it follows δ
m(X)(π(z))(α) = (p, (wzαp)

−1󰌻X 󰌼) = (p, π(z′)).

3.4. The Minimal Representation m(X) 83

• Let g : r(Y) → m(X) be any G-automata homomorphism. Let z ∈ r(y), then

by definition there exists wz ∈ R(y), such that y
wz−→ z in Y , and thus in r(Y).

Since g is a G-automata homomorphism, it follows 󰌻X 󰌼 = g(y)
wz−→ g(z) in

m(X). By Lemma 3.4.2.3, on the other hand, we have 󰌻X 󰌼 wz−→ w−1
z 󰌻X 󰌼 in

m(X). From Lemma 3.4.1.2 it thus follows g(z) = w−1
z 󰌻X 󰌼 = π(z).

The next result shows that the minimisation of a normal G-automaton is isomor-

phic to the automaton that arises by identifying semantically equivalent pairs among

reachable states.

Lemma 3.4.2.7. Let X be a normal G-automaton with initial state x ∈ X and

π : r(X) ↠ m(X) as in Proposition 3.4.2.6, then y ≃ z iff π(y) = π(z) for all

y, z ∈ r(x). Consequently, m(X) is isomorphic to r(X)/≃.

Proof. The statement follows from the following chain of equivalences:

π(y) = π(z) ⇔ (wy)
−1󰌻X 󰌼 = (wz)

−1󰌻X 󰌼 (Definition of π)

⇔ 󰌻y󰌼 = 󰌻z󰌼 (Definition of (−)−1󰌻X 󰌼)
⇔ y ≃ z (X is normal)

On a high level, the automata homomorphism π can be recovered as the unique

(surjective) diagonal making the diagram in Figure 3.5a commute.

In Proposition 3.4.1.8 it was noted that the reachable subautomaton r(X) satisfies

the nesting coequation, whenever X does. By Proposition 3.4.2.6 there exists an

epimorphism π : r(X) ↠ m(X), if X is normal. Since coalgebras satisfying a

coequation form a covariety, which is closed under homomorphic images [46, 135], we

thus can deduce the following result.

Corollary 3.4.2.8. Let X be a normal G-automaton, then m(X) satisfies the nest-

ing coequation, whenever X does.

Proof. In Proposition 3.4.1.8 it was noted that the reachable subcoalgebra r(X)

satisfies the nesting coequation, whenever X does. By Proposition 3.4.2.6 there

84 Chapter 3. Learning Guarded Programs

exists an epimorphism π : r(X) ↠ m(X) for any normal automaton X . The claim

follows since coalgebras satisfying a coequation form a covariety, which is in particular

closed under homomorphic images [46, 135].

We continue with the observation that two normalG-automata are language equiv-

alent if and only if their minimisations are isomorphic. As depicted in Figure 3.5b,

this implies that two expressions e and f are language equivalent if and only if the

minimisations of their normalised Thompson automata are isomorphic. A similar

idea occurs in Kozen’s completeness proof for Kleene Algebra [88, Theorem 19].

Corollary 3.4.2.9. Let X and Y be normal G-automata, then 󰌻X 󰌼 = 󰌻Y 󰌼 iff

m(X) ∼= m(Y).

Proof. We begin by assuming 󰌻X 󰌼 = 󰌻Y 󰌼. From Lemma 3.4.2.4 and Corollary 3.4.2.5

we know that m(X) and m(Y) are normal and accept the same language as X and

Y . From Lemma 3.4.2.3 it follows that m(X) and m(Y) are reachable. Proposi-

tion 3.4.2.6 thus implies that there exist G-automata homomorphisms π1 : m(Y) →
m(X) and π2 : m(X) → m(Y). From the uniqueness property in Proposition 3.4.2.6

we deduce π1π2 = idm(X) and π2π1 = idm(Y). Hence π2 : m(X) → m(Y) is an iso-

morphism with inverse π1.

Conversely, assume m(X) is isomorphic to m(Y). Then it immediately follows

󰌻m(X)󰌼 = 󰌻m(Y)󰌼, which implies 󰌻X 󰌼 = 󰌻Y 󰌼 by Lemma 3.4.2.4.

We conclude with the size-minimality of the minimisation of a normal automaton

among language equivalent normal automata.

Corollary 3.4.2.10. Let X and Y be normal G-automata with 󰌻X 󰌼 = 󰌻Y 󰌼. Then
|m(X)| ≤ |Y |, where |m(X)| = |Y | iff m(X) ∼= Y .

Proof. From Corollary 3.4.2.9 it immediately follows m(X) ∼= m(Y). We addition-

ally observe Figure 3.5a to derive

|m(X)| = |m(Y)| ≤ |r(Y)| ≤ |Y |.

We show next |m(X)| = |Y | iff m(X) ∼= Y :

3.5. Learning m(X) 85

• Assume m(X) ∼= Y , then immediately |m(X)| = |Y |.

• Assume |m(X)| = |Y |, then Proposition 3.4.2.6 and Figure 3.5a imply:

|r(Y)| ≥ |m(X)| = |Y | ≥ |r(Y)|.

It thus follows |m(X)| = |r(Y)| = |Y |. From the second equality and the

definition of r(Y) it immediately follows Y ∼= r(Y). The first equality implies

that the epimorphism π : r(Y) ↠ m(X) in Proposition 3.4.2.6 is a bijective

automata homomorphism. Any bijective coalgebra homomorphism is a coal-

gebra isomorphism [132, Prop. 2.3]. It is clear that the inverse of an initial

state preserving coalgebra isomorphism preserves initial states as well. Thus

π : r(Y) ∼= m(X) is an G-automata isomorphism.

3.5 Learning m(X)

In this section we formally investigate the correctness of GL∗ (Algorithm 2). Our

main result is Theorem 3.5.2.6, which shows that if the oracle is instantiated with a

deterministic language accepted by a finite normal G-automaton X , then GL∗ termi-

nates with a hypothesis isomorphic to m(X). For calculations, it will be convenient

to use the following definition of an observation table.

Definition 3.5.0.1. An observation table T = (S,E, row) consists of subsets S ⊆
GS−, E ⊆ GS and a function row : S ∪ S · (At · Σ) → 2E, such that:

• ε ∈ S and At ⊆ E

• αpe ∈ E implies e ∈ E (suffix-closed)

• sαp ∈ S implies s ∈ S (prefix-closed)

• s ∕= t implies row(s) ∕= row(t) for s, t ∈ S

• ε ∕= s ∈ S implies row(s)(e) = 1 for some e ∈ E

• row(sαp)(e) = row(s)(αpe), if αpe ∈ E

86 Chapter 3. Learning Guarded Programs

Not every table induces a well-defined G-automaton. To ensure correctness, we

have to restrict ourselves to a subclass of tables that satisfies two important properties.

We call an observation table deterministic if the guarded string language row(s) ⊆ GS

is deterministic for all s ∈ S. An observation table is closed, if for all t ∈ S · (At · Σ)
with row(t)(e) = 1 for some e ∈ E, there exists an s ∈ S such that row(s) = row(t).

The result below shows that if the oracle is instantiated with a deterministic lan-

guage accepted by a finite normalG-automaton X , we have a well-defined observation

table at every step.

Proposition 3.5.0.2. If Algorithm 2 is instantiated with a deterministic language

accepted by a finite normal G-automaton X , then T is a well-defined deterministic

observation table at every step.

Proof. • Any G-automaton accepts a deterministic language. Since row(s) ⊆
s−1󰌻X 󰌼, and determinacy is preserved under derivatives, the determinacy of T

is thus implied by the determinacy of 󰌻X 󰌼.

• In the initial step we have S = {ε} and E = At. In every step that follows the

sets S and E are only extended. We thus have ε ∈ S and At ⊆ E in every step.

• In the initial step S = {ε} and E = At are clearly prefix and suffix closed,

respectively. In the following steps S is only extended with strings of the shape

sαp for s ∈ S, and E is only extended with the suffixes of some z. Hence S and

E are prefix and suffix closed, respectively, in every step.

• In the initial step S = {ε}, hence all rows indexed by elements in S are trivially

disjoint. In the following steps we only add sαp to S, if row(sαp) ∕= row(t) for

all t ∈ S. Since disjoint rows do at no point collapse, we can deduce that s ∕= t

implies row(s) ∕= row(t) for all s, t ∈ S in every step.

• In the initial step we have S = {ε}, thus the observation that for all s ∈ S with

s ∕= ε we have row(s) ∕= ∅ is trivially true. In the following steps we only add

elements sαp with row(sαp) ∕= ∅ to S.

• Since row(t)(e) = 󰌻X 󰌼(te), the identity row(sαp)(e) = row(s)(αpe), if αpe ∈ E,

follows from the associativity of string concatenation.

3.5. Learning m(X) 87

Any closed deterministic table induces a G-automaton in the following way.

Definition 3.5.0.3. Given a closed deterministic observation table T = (S,E, row),

let m(T) := ({row(s) | s ∈ S}, δ, row(ε)) be the G-automaton with

δ(L)(α) =

󰀻
󰁁󰁁󰁁󰀿

󰁁󰁁󰁁󰀽

(p, (αp)−1L) if (αp)−1L ∕= ∅

1 if α ∈ L

0 otherwise

, (3.7)

where L ∈ {row(s) | s ∈ S} and (αp)−1row(s) = row(sαp).

A few remarks on the well-definedness of the above definition are in order. By

Definition 3.5.0.1 the upper-rows of an observation table are disjoint. Since T is

deterministic, precisely one of the three cases in (3.7) occurs. If (αp)−1row(s) is non-

empty, there exists, because T is closed, some t ∈ S with (αp)−1row(s) = row(t). This

shows that m(T) is closed under transitions.

3.5.1 Properties of m(T)

In what follows, let T be a closed deterministic observation table, unless states oth-

erwise. We will establish a few basic properties of m(T). First, we observe its reach-

ability, which is implied by a slightly stronger statement.

Lemma 3.5.1.1. For all s ∈ S and t ∈ GS− such that st ∈ S, we have row(s)
t−→

row(st) in m(T). In particular, m(T) is reachable.

Proof. We show the statement by induction on the length of t ∈ GS−:

• If t = ε, the statement follows from the base case of (3.3), i.e. row(s)
ε−→ row(s).

• If t = vαp for v ∈ GS−, we have sv ∈ S, since svαp = st ∈ S and S is

prefix closed by Definition 3.5.0.1. Thus row(s)
v−→ row(sv) by the induction

hypothesis. Since ε ∕= st ∈ S, we have (αp)−1row(sv) = row(st) ∕= ∅ by

Definition 3.5.0.1. Thus it follows row(sv)
αp−→ row(svαp) by (3.7). We conclude

row(s)
vαp=t−−−→ row(svαp) = row(st) by (3.3).

88 Chapter 3. Learning Guarded Programs

Since 󰂃 ∈ S by Definition 3.5.0.1, we in particular obtain row(ε)
s−→ row(s) in m(T)

for all s ∈ S, which implies the reachability of m(T).

We call a G-automaton (Y , y) consistent with T , if S ⊆ R(y) and 󰌻ys󰌼(e) =

row(s)(e) for all s ∈ S, e ∈ E, and ys ∈ Y with y
s−→ ys. By Lemma 3.5.1.1, the

automaton m(T) is consistent with T if and only if 󰌻row(s)󰌼(e) = row(s)(e) for all

s ∈ S and e ∈ E. The consistency of m(T) with T should not be confused with the

consistency of T itself. Both terminologies appear frequently in the literature [14].

We show that m(T) is not only consistent with T , but has in fact the fewest number

of states among all automata consistent with T .

Lemma 3.5.1.2. m(T) is size-minimal among automata consistent with T .

Proof. We begin by showing that m(T) is consistent with T , that is, it satisfies

󰌻row(s)󰌼(e) = row(s)(e) for all s ∈ S, e ∈ E, by induction on the length of e:

• For the induction base, let e = α ∈ At, then it immediately follows that:

󰌻row(s)󰌼(e) = 1 ⇔ δ(row(s))(α) = 1 (Definition of 󰌻−󰌼)
⇔ row(s)(α) = 1 (3.7)

• For the induction step, let e = αpw for w ∈ GS, then Definition 3.5.0.1 implies

w ∈ E and row(s)(αpw) = row(sαp)(w). Thus we can deduce:

󰌻row(s)󰌼(αpw) = 1

⇔ ∃t ∈ S : ∅ ∕= row(sαp) = row(t) and 󰌻row(t)󰌼(w) = 1 (Definition of 󰌻−󰌼)
⇔ ∃t ∈ S : row(sαp) = row(t) and row(t)(w) = 1 (w ∈ E, IH)

⇔ row(sαp)(w) = 1 (T closed)

⇔ row(s)(αpw) = 1 (Definition 3.5.0.1)

Let (Y , y) be any G-automaton consistent with T , i.e. S ⊆ R(y) and 󰌻ys󰌼(e) =

row(s)(e) for all s ∈ S, e ∈ E, and ys ∈ Y with y
s−→ ys. We define a function

f : {row(s) | s ∈ S} → Y by f(row(s)) = ys. The function is well-defined, since

3.5. Learning m(X) 89

S ⊆ R(y). Assume f(row(s)) = f(row(t)), i.e. ys = yt for s, t ∈ S. Then we can

deduce

row(s)(e) = 󰌻ys󰌼(e) = 󰌻yt󰌼(e) = row(t)(e)

for all e ∈ E. Since by Definition 3.5.0.1 rows indexed by S are disjoint, it follows

s = t. This shows that f is injective, which implies the size-minimality of m(T).

From the consistency of m(T) with T it is straightforward to derive its normality

and observability.

Lemma 3.5.1.3. m(T) is normal and observable.

Proof. • Assume δ(row(s))(α) = (p, row(t)) for s, t ∈ S. Then we have

row(t) = row(sαp) = (αp)−1row(s) ∕= ∅

by (3.7). From Lemma 3.5.1.2 m(T) it follows that 󰌻row(t)󰌼 is non-empty, which

proves the normality of m(T).

• Assume 󰌻row(s)󰌼 = 󰌻row(t)󰌼 for s, t ∈ S. Then, by Lemma 3.5.1.2, we have

row(s)(e) = 󰌻row(s)󰌼(e) = 󰌻row(t)󰌼(e) = row(t)(e)

for all e ∈ E ⊆ GS. Thus row(s) = row(t), which shows that 󰌻−󰌼 is injective,

that is, m(T) is observable.

3.5.2 Relationship Between m(T) and m(X)

We will next deduce the correctness of GL∗, that is, its termination with an automaton

isomorphic to m(X), if the teacher is instantiated with the language accepted by a

finite normal automaton X .

In a first step we establish that any hypothesis admits an injective function from

its state-space into the state-space of m(X). The result below does not necessarily

require the observation table to be deterministic or closed.

Lemma 3.5.2.1. Let T = (S,E, row) be an observation table with row(t)(e) =

󰌻X 󰌼(te) for all t ∈ S ∪ S · (At · Σ), e ∈ E, and let x ∈ X be the initial state of

90 Chapter 3. Learning Guarded Programs

X . Then π : {row(s) | s ∈ S} → {w−1󰌻X 󰌼 | w ∈ R(x)}, row(s) 󰀁→ s−1󰌻X 󰌼 is a

well-defined injective function.

Proof. We first show that π is well-defined. To this end, we need to establish that i)

S ⊆ R(x); and ii) if row(s) = row(t) for s, t ∈ S, then s−1󰌻X 󰌼 = t−1󰌻X 󰌼.
For i) note that if s = ε, then x

s−→ x by the base case of (3.3), i.e. s ∈ R(x).

If s ∕= ε, then Definition 3.5.0.1 implies the existence of some e ∈ E, such that

row(s)(e) = 1. Thus 󰌻x󰌼(se) = 󰌻X 󰌼(se) = row(s)(e) = 1, which implies s ∈ R(x)

by the definition of 󰌻−󰌼. For ii) it is enough to observe that by Definition 3.5.0.1 all

rows of an observation table are disjoint.

To show that π is injective, assume π(row(s)) = π(row(t)), for s, t ∈ S. By

definition of π we thus have an equivalence s ≡󰌻X 󰌼 t. From the definition of ≡󰌻X 󰌼

and the assumptions it thus follows

e ∈ row(s) ⇔ se ∈ 󰌻X 󰌼 ⇔ te ∈ 󰌻X 󰌼 ⇔ e ∈ row(t)

for all e ∈ E. This proves the equality row(s) = row(t).

If the algorithm terminates with a hypothesis m(T), the latter is, by definition,

language equivalent to X , and thus to the minimisation m(X), by Lemma 3.4.2.4.

The next result implies a stronger statement: in case of termination, the hypothesis

m(T) is isomorphic to m(X), via the function π of Lemma 3.5.2.1.

Proposition 3.5.2.2. Let T = (S,E, row) be a closed deterministic observation table

with row(t)(e) = 󰌻X 󰌼(te) for all t ∈ S ∪ S · (At ·Σ), e ∈ E. Let π be the injection of

Lemma 3.5.2.1, and X normal. The following are equivalent:

1. π : m(T) ≃ m(X) is a G-automata isomorphism

2. 󰌻m(T)󰌼 = 󰌻m(X)󰌼

Proof. • 1. → 2.: Since π is a homomorphism, it follows 󰌻−󰌼m(X) ◦ π = 󰌻−󰌼m(T)

3.5. Learning m(X) 91

by uniqueness. In particular we have:

󰌻m(T)󰌼m(T) = 󰌻row(ε)󰌼m(T) (Definition of 󰌻−󰌼m(T))

= 󰌻π(row(ε))󰌼m(X) (󰌻−󰌼m(X) ◦ π = 󰌻−󰌼m(T))

= 󰌻ε−1X 󰌼m(X) (Definition of π)

= 󰌻X 󰌼m(X) (Definition of 󰌻−󰌼m(X))

• 2. → 1. : By Lemma 3.5.1.3 and Lemma 3.5.1.1, m(T) is normal and reachable.

From the assumption and Lemma 3.4.2.4 it follows 󰌻m(T)󰌼 = 󰌻m(X)󰌼 = 󰌻X 󰌼.
By assumption X is normal. By Proposition 3.4.2.6 there thus exists a unique

surjective automata homomorphism f : m(T) = r(m(T)) → m(X) that satis-

fies f(row(s)) = w−1
s 󰌻X 󰌼 for row(ε)

ws→ row(s) in m(T). From Lemma 3.5.1.1

it follows that ws = s. Therefore the definitions of π and f coincide, π = f .

Since by Lemma 3.5.2.1 the function π = f is injective, it is a bijective coal-

gebra homomorphism. Any bijective coalgebra homomorphism is a coalgebra

isomorphism [132, Prop. 2.3]. It is clear that the inverse of an initial state pre-

serving coalgebra isomorphism preserves initial states as well. It thus follows

that π = f is a G-automata isomorphism.

The main argument in the proof of Theorem 3.5.2.6 is Proposition 3.5.2.5. To

prove the latter, we need the following two results. Both results assume two closed

deterministic tables T and T ′, with the latter extending the former. The first state-

ment, Lemma 3.5.2.3, relates the transition function of m(T) to the one of m(T ′).

Lemma 3.5.2.3. Let T = (S,E, row) and T ′ = (S,E ′, row′) be closed deterministic

observation tables with E ⊆ E ′ and row(t)(e) = row′(t)(e) for all t ∈ S∪S ·(At·Σ), e ∈
E. Let m(T) and m(T ′) have transition functions δ and δ′, respectively, then for all

s, t ∈ S:

• δ′(row′(s))(α) = 1 iff δ(row(s))(α) = 1

• δ′(row′(s))(α) = (p, row′(t)) implies δ(row(s))(α) = (p, row(t)) or

δ(row(s))(α) = 0

92 Chapter 3. Learning Guarded Programs

• δ′(row′(s))(α) = 0 implies δ(row(s))(α) = 0

Proof. • For the first point we deduce:

δ′(row′(s))(α) = 1 ⇔ row′(s)(α) = 1 (Definition of δ′)

⇔ row(s)(α) = 1 (α ∈ At ⊆ E)

⇔ δ(row(s))(α) = 1 (Definition of δ)

• For the second point, assume δ′(row′(s))(α) = (p, row′(t)) for t ∈ S with

row′(sαp) = row′(t). Then by the first point

δ(row(s))(α) = 0, or δ(row(s))(α) = (p, row(u))

for some u ∈ S with row(sαp) = row(u). We further have

row(t)(e) = row′(t)(e) = row′(sαp)(e) = row(sαp)(e) = row(u)(e)

for all e ∈ E. In other words, we have derived row(t) = row(u).

• For the last point, assume δ′(row′(s))(α) = 0. Then by the first point

δ(row(s))(α) = 0, or δ(row(s))(α) = (p, row(t))

for some t ∈ S with row(sαp) = row(t). By the definition of δ, the latter case

implies

row′(sαp)(e) = row(sαp)(e) = 1

for some e ∈ E ⊆ E ′. It thus follows δ′(row′(s))(α) ∕∈ 2, which contradicts the

assumption δ′(row′(s))(α) = 0. We thus can conclude δ(row(s))(α) = 0.

The second statement, Lemma 3.5.2.4, establishes an inclusion of the language

semantics of m(T) into the language semantics of m(T ′).

Lemma 3.5.2.4. Let T = (S,E, row) and T ′ = (S,E ′, row′) be closed deterministic

observation table with E ⊆ E ′ and row(t)(e) = row′(t)(e) for all t ∈ S∪S ·(At·Σ), e ∈
E. Then 󰌻row(s)󰌼m(T) ⊆ 󰌻row′(s)󰌼m(T ′) for all s ∈ S.

3.5. Learning m(X) 93

Proof. We show w ∈ 󰌻row(s)󰌼m(T) implies w ∈ 󰌻row′(s)󰌼m(T ′) for all s ∈ S and w ∈ GS

by induction on w. We denote the transition functions of m(T) and m(T ′) by δ and

δ′, respectively.

• For the induction base, assume w = α. Then we deduce:

α ∈ 󰌻row(s)󰌼m(T) ⇔ δ(row(s))(α) = 1 (Definition of 󰌻−󰌼)
⇔ δ′(row′(s))(α) = 1 (Lemma 3.5.2.3)

⇔ α ∈ 󰌻row′(s)󰌼m(T ′) (Definition of 󰌻−󰌼)

• In the induction step, let w = αpv. Then we have:

αpv ∈ 󰌻row(s)󰌼m(T)

⇔ (Definition of 󰌻−󰌼)
∃t ∈ S : δ(row(s))(α) = (p, row(t)), v ∈ 󰌻row(t)󰌼m(T)

⇒ (Lemma 3.5.2.3, IH)

∃t ∈ S : δ′(row′(s))(α) = (p, row′(t)), v ∈ 󰌻row′(t)󰌼m(T ′)

⇔ (Definition of 󰌻−󰌼)
αpv ∈ 󰌻row′(s)󰌼m(T ′)

The next result shows that, if the oracle replies no to an equivalence query and

provides us with a counterexample z, then the table extended with the suffixes of z

can immediately be closed only if it is the first time such a situation occurs.

Proposition 3.5.2.5. Let T = (S,E, row) be a closed deterministic observation table

with row(t)(e) = 󰌻X 󰌼(te) for all t ∈ S ∪S · (At ·Σ), e ∈ E. Let 󰌻m(T)󰌼(z) ∕= 󰌻X 󰌼(z)
for some z ∈ GS, and T ′ = (S,E ∪ suf(z), row′) with row′(t)(e) = 󰌻X 󰌼(te). If T ′ is

closed, then row′(ε)(e) = 0 for all e ∈ E, but row′(ε)(z′) = 1 for some z′ ∈ suf(z).

Proof. • Assume 󰌻X 󰌼(z) = 0 and 󰌻m(T)󰌼(z) = 1. Since 󰌻m(T)󰌼 ⊆ 󰌻m(T ′)󰌼 by

Lemma 3.5.2.4, it follows 󰌻m(T ′)󰌼(z) = 1. From Lemma 3.5.1.2 and the global

94 Chapter 3. Learning Guarded Programs

assumptions we thus can deduce

1 = 󰌻m(T ′)󰌼(z) = 󰌻row′(ε)󰌼(z) = row′(ε)(z) = 󰌻X 󰌼(z),

which contradicts 0 = 󰌻X 󰌼(z).

• Assume 󰌻X 󰌼(z) = 1 and 󰌻m(T)󰌼(z) = 0. From Lemma 3.5.1.2 and the global

assumptions we can deduce

1 = 󰌻X 󰌼(z) = row′(ε)(z) = 󰌻row′(ε)󰌼(z) = 󰌻m(T ′)󰌼(z).

By Lemma 3.5.2.3, there exists some decomposition z = vαpz′ for v ∈ GS−, z′ ∈
suf(z), such that for some t ∈ S:

1. row′(ε)
v−→ row′(t) in m(T ′) and row(ε)

v−→ row(t) in m(T);

2. δ′(row′(t))(α) = (p, row′(t′)) for some t′ ∈ S, but δ(row(t))(α) = 0.

For all e ∈ E it follows

0 = row(tαp)(e) = row′(tαp)(e) = row′(t′)(e) = row(t′)(e),

since otherwise δ(row(t))(α) ∕= 0 by the definition of δ. From Definition 3.5.0.1

we can deduce t′ = ε. Since (vαp)z′ = z ∈ 󰌻m(T ′)󰌼 = 󰌻row′(ε)󰌼 and row′(ε)
vαp−−→

row′(t′) = row′(ε), it follows z′ ∈ 󰌻row′(ε)󰌼 by the definition of 󰌻−󰌼. From

Lemma 3.5.1.2 we can conclude z′ ∈ row′(ε).

In consequence, an infinite chain of negative equivalence queries and immediately

closed extended tables is impossible. Since fixing a closedness defect increases the

size of m(T), which by Lemma 3.5.2.1 is bounded by the finite number of states in

m(X), we can deduce the correctness of Algorithm 2.

Theorem 3.5.2.6. If Algorithm 2 is instantiated with the language accepted by a fi-

nite normal automaton X , then it terminates with a hypothesis isomorphic to m(X).

Proof. By Proposition 3.5.0.2, T is a well-defined deterministic observation table at

every step. We continue by showing that the algorithm yields m(X) in finitely

3.6. Comparison with Moore Automata 95

many steps. By Lemma 3.5.2.1 we have |X| ≤ |Y | for X = {row(s) | s ∈ S} and

Y = {w−1󰌻X 󰌼 | w ∈ R(x)} at any point of the algorithm. Since X is finite, the state-

space Y of m(X) is finite. At no point of the algorithm does the size of X decrease.

Resolving a closedness defect strictly increases the size ofX. Hence a closedness defect

can only occur finitely many times. The only way the algorithm could not terminate

is thus an infinite chain of negative equivalence queries, for which the subsequent

suffix-enriched table is immediately closed again. By applying Proposition 3.5.2.5

twice, one observes that such a case can not occur.

3.6 Comparison with Moore Automata

How are the minimal GKAT automaton (Figure 3.2e) and the minimal Moore au-

tomaton (Figure 3.1f) representing the guarded deterministic language (3.1) related?

Why should we learn the former, and not the latter? Are there optimizations for L∗

that we could adapt for GL∗? Those are the questions this section seeks to answer.

3.6.1 Embedding of GKAT Automata

Comparing the GKAT automaton in Figure 3.2e with the Moore automaton (with

input alphabet At · Σ and output alphabet 2At, short M-automaton) in Figure 3.1f

suggests that the latter can be recovered from the former by adding a sink-state to

make halting transitions explicit. Lemma 3.6.1.1 below formalises this idea.

For completeness, we first briefly recall the language semantics of Moore automata.

Let X = (X, 〈ε, δ〉) be aM -coalgebra, whereMX = B×XA, for an input alphabet A

and an output alphabet B. Then one can inductively define a function 󰌻−󰌼 : X → BA∗

via 󰌻x󰌼(ε) = ε(x) and 󰌻x󰌼(av) = 󰌻δ(x)(a)󰌼(v). In particular, if A = (At · Σ) and

B = 2At for finite sets At and Σ, then the former induces via currying a semantics

function 󰌻−󰌼 : X → P((At · Σ)∗ · At) = P(GS) that is defined by:

α ∈ 󰌻x󰌼 ⇔ ε(x)(α) = 1; αpv ∈ 󰌻x󰌼 ⇔ δ(x)(αp) = y and v ∈ 󰌻y󰌼.

Lemma 3.6.1.1. Given a G-automaton X = (X, δ, x), let f(X) := (X+{󰂏}, 〈ε, ∂〉, x)

96 Chapter 3. Learning Guarded Programs

be the M-automaton with:

∂(x)(αp) :=

󰀻
󰀿

󰀽
y if x ∈ X, δ(x)(α) = (p, y)

󰂏 otherwise

ε(x)(α) :=

󰀻
󰀿

󰀽
1 if x ∈ X, δ(x)(α) = 1

0 otherwise
.

Then 󰌻x󰌼X = 󰌻x󰌼f(X) for all x ∈ X, and 󰌻󰂏󰌼f(X) = ∅. In particular, 󰌻f(X)󰌼f(X) =

󰌻X 󰌼X .

Proof. We simultaneously show i) w ∕∈ 󰌻󰂏󰌼f(X) and ii) w ∈ 󰌻x󰌼f(X) iff w ∈ 󰌻x󰌼X , for

all w ∈ GS and x ∈ X by induction on the length of w.

• For the induction base assume w = ε, then we find for i):

α ∈ 󰌻󰂏󰌼f(X) ⇔ ε(󰂏)(α) = 1 (Definition of 󰌻−󰌼f(X))

⇔ 0 = 1 (Definition of ε)

⇔ false (0 ∕= 1)

Similarly, we derive the following chain for ii):

α ∈ 󰌻x󰌼f(X) ⇔ ε(x)(α) = 1 (Definition of 󰌻−󰌼f(X))

⇔ δ(x)(α) = 1 (Definition of ε, x ∈ X)

⇔ α ∈ 󰌻x󰌼X (Definition of 󰌻−󰌼X)

• For the induction step, let w = αpv for v ∈ GS, then we deduce for i):

αpv ∈ 󰌻󰂏󰌼f(X) ⇔ ∂(󰂏)(αp) = y, v ∈ 󰌻y󰌼f(X) (Definition of 󰌻−󰌼f(X))

⇔ ∂(󰂏)(αp) = 󰂏, v ∈ 󰌻󰂏󰌼f(X) (Definition of ∂)

⇔ false (IH)

3.6. Comparison with Moore Automata 97

Analogously, we deduce for ii):

αpv ∈ 󰌻x󰌼f(X)

⇔ (Definition of 󰌻−󰌼f(X))

∂(x)(αp) = y, v ∈ 󰌻y󰌼f(X)

⇔ (Definition of ∂)

δ(x)(α) = (p, y), v ∈ 󰌻y󰌼f(X) or δ(x)(α) ∈ 2, v ∈ 󰌻󰂏󰌼f(X)

⇔ (IH)

δ(x)(α) = (p, y), v ∈ 󰌻y󰌼X or false

⇔ (Definition of 󰌻−󰌼X)

αpv ∈ 󰌻x󰌼X

In particular, 󰌻f(X)󰌼f(X) = 󰌻x󰌼f(X) = 󰌻x󰌼X = 󰌻X 󰌼X .

As one would hope for, the above construction maps, up to isomorphism, the

minimal GKAT automaton m(X) to the minimal Moore automaton accepting the

same language as X .

Corollary 3.6.1.2. Let X be a normal G-automaton, then f(m(X)) ∼= m(f(X))

as M-automata.

Proof. From Lemma 3.6.1.1 and Lemma 3.4.2.4 we can deduce that f(m(X)) accepts

󰌻X 󰌼, which is also accepted by m(f(X)).

By Corollary 3.4.2.5 󰌻−󰌼m(X) is injective. As Corollary 3.4.2.5 and Lemma 3.4.2.3

imply that m(X) is normal and reachable, we know that 󰌻−󰌼m(X) never evaluates to

the empty set. From Lemma 3.6.1.1 we thus can deduce that 󰌻−󰌼f(m(X)) is injective.

It is not hard to see that if a state is reachable in Y , then it is reachable in f(Y).

The element 󰂏 is reachable in f(Y) in particular if Y is reachable and normal.

Hence, since m(X) is reachable and normal by Lemma 3.4.2.3 and Corollary 3.4.2.5,

respectively, f(m(X)) is reachable.

The automaton f(m(X)) thus accepts the same language as m(f(X)), is observ-

able, and reachable. By uniqueness, f(m(X)) andm(f(X)) are thus isomorphic.

98 Chapter 3. Learning Guarded Programs

3.6.2 Complexity Analysis

We now compare the worst-case complexities of L∗ (Algorithm 1) and GL∗ (Algo-

rithm 2) for learning automata representations of GKAT programs e. We are mainly

interested in a bound to the number of membership queries to 󰌻e󰌼. The example runs

in Figure 3.1 and Figure 3.2 seem to indicate that with respect to this aspect, GL∗

performs better than L∗. The result below confirms this intuition.

Proposition 3.6.2.1. Algorithm 1 requires at most O(a∗(|At|∗b)) many membership

queries to 󰌻e󰌼 for learning a M-automaton representation of e, whereas Algorithm 2

requires at most O(a ∗ (|At| + b)) many membership queries to 󰌻e󰌼 for learning a

G-automaton representation of e, for some9 integers a, b ∈ N.

Proof. We first derive the maximum number of entries a table indexed by S and

E can have during a run of L∗ for generalised languages with input alphabet A and

output alphabet B. Since we use a suffix-strategy for the handling of counterexamples

(opposed to a prefix-strategy), our presentation slightly differs from the one in [14].

Let k denote the cardinality of the alphabet A. The number of states of the minimal

Moore automaton accepting the target language is referred to by n, and the maximum

length of a counterexample by m. The size of S is bounded by n. In the worst case,

the sets S and S · A are disjoint. The cardinality of S ∪ S · A is thus bounded by

n+ n ∗ k. The maximum number of strings in E is 1 +m ∗ (n− 1). This is because

E is instantiated with ε, and only extended with suffixes of counterexamples. Each

counterexample has at most m suffixes, and there can only be n−1 counterexamples,

since any counterexample leads to a closedness defect, resolving which increases the

size of S, which is instantiated with ε, and bounded in size by n. A table can thus

have at most (n+ n ∗ k) ∗ (1 +m ∗ (n− 1)), or O(m ∗ n2 ∗ k), many entries.

In the case of A = (At ·Σ) and B = 2At, each entry requires |At| many membership

queries. Overall Algorithm 1 thus requires at most

O(n ∗ |At| ∗ |Σ| ∗ (|At| ∗m ∗ n))

many membership queries to learn a deterministic guarded string language.

9Let m be the maximum length of a counterexample and n the size of the minimal Moore
automaton accepting 󰌻e󰌼, then a = n ∗ |At| ∗ |Σ| and b = m ∗ n.

3.6. Comparison with Moore Automata 99

We now derive a bound to the number of membership queries GL∗ requires. As

before, let m denote the maximum length of a counterexample, and n the number of

states of the minimal Moore automaton accepting the target language. The cardinal-

ity of the set S is bounded by the number of states in the minimal GKAT automaton

accepting the target language, which by Corollary 3.6.1.2 is n − 1. The cardinality

of S ∪ S · (At · Σ) is thus bounded by (n − 1) + (n − 1) ∗ |At| ∗ |Σ|. The maximum

number of strings in E is |At| +m ∗ (n − 1). This is because E is instantiated with

At, and only extended with suffixes of counterexamples. Each counterexample has at

most m suffixes, and there can only be n− 1 counterexamples. Indeed, assume there

are u > n− 1 counterexamples. Since resolving a closedness defect increases the size

of S, which is instantiated with ε, and in size bounded by n−1, there can be at most

(n− 1)− 1 = n− 2 counterexamples for which the extended table is not closed. Thus

there must be at least u− (n− 2) = u− n+ 2 ≥ n− n+ 2 = 2 counterexamples for

which the extended table is closed. This is a contradiction, since Proposition 3.5.2.5

implies that this can be the case for at most 1 counterexample. A table can thus have

at most ((n−1)+(n−1)∗ |At|∗ |Σ|)∗ (|At|+m∗ (n−1)) entries. Each entry requires

one membership query. Overall Algorithm 2 requires at most

O(n ∗ |At| ∗ |Σ| ∗ (|At|+m ∗ n))

many membership queries to learn a deterministic guarded string language. The

statement follows by setting a := n ∗ |At| ∗ |Σ| and b := m ∗ n.

The following result shows that for all integers x, y greater than 2, the product

x ∗ y is strictly greater than the sum x+ y.

Lemma 3.6.2.2. Let a, b ∈ N≥3, then a ∗ b > a+ b.

Proof. We prove the statement by induction on a ∈ N≥3.

• For the induction base, assume a = 3. We show that 3∗b > 3+b for all b ∈ N≥3

by induction on b. In the induction base, b = 3, the statement immediately is

implied by 3 ∗ 3 = 9 > 6 = 3+ 3. Assume the statement is true for some b ≥ 3.

100 Chapter 3. Learning Guarded Programs

The induction step follows from

3 ∗ (b+ 1) = 3b+ 3 > (3 + b) + 3 = 6 + b > 3 + (b+ 1).

• Assume the statement is true for a ≥ 3. The induction step follows from

(a+ 1) ∗ b = (a ∗ b) + b > (a+ b) + b > (a+ 1) + b.

In fact, it is also not hard to see that the difference between a∗b and a+b increases

with the sizes of a and b.

Lemma 3.6.2.3. a+ b lies in o(a ∗ b)

Proof. We need to show that for any positive real number c > 0, there exists a natural

number N , such that for all natural numbers a, b ≥ N , we have a+ b < c ∗ (a ∗ b), or
equivalently, a+b

a∗b < c.

Given c > 0, we define N := ⌈2
c
⌉ + 1. Let a, b ≥ N > 2

c
. Then it immediately

follows that c
2
> 1

b
and c

2
> 1

a
. Thus we can compute

a+ b

a ∗ b =
a

a ∗ b +
b

a ∗ b =
1

b
+

1

a
<

c

2
+

c

2
= c.

The advantage of GL∗ over L∗ for learning deterministic guarded string languages

in terms of membership queries thus increases with the number of atoms, which is

exponential in the number of primitive tests, At ∼= 2T . In applications to network

verification, the number of tests, thus atoms, is typically quite large [12]. The differ-

ence between GL∗ and L∗ described in Proposition 3.6.2.1 is mainly due to a subtle

play with the table indices, based on currying. It can be further increased by avoiding

querying certain rows all together, taking into account the deterministic nature of the

target language, as indicated in Section 3.2.2.

3.6. Comparison with Moore Automata 101

3.6.3 Optimized Counterexamples

In this section we present an optimization of GL∗ that is based on a subtle refinement of

Proposition 3.5.2.5. We show that while Algorithm 2 reacts to a negative equivalence

query with counterexample z ∈ GS by adding columns for all suffixes in suf(z), it is in

fact enough to add columns for a smaller subset of suffixes suf(z′) ⊆ suf(z), for some

z′ ∈ suf(z) of minimal length. Our approach is inspired by the optimized counterex-

ample handling method of Rivest and Schapire for L∗ [130]. To state Lemma 3.6.3.1,

we need to define the following set:

Az := {z′ ∈ suf(z) | z = vαpz′, row(ε)
v−→ row(sv), x

sv−→ xsv ,

󰌻row(sv)󰌼(αpz′) ∕= 󰌻xsv󰌼(αpz′)}

Intuitively, Az contains all strictly-shorter suffixes of z that witness a mismatch be-

tween the behaviour of the hypothesis and the target language.

Lemma 3.6.3.1. Let T = (S,E, row) be a closed deterministic observation table with

row(t)(e) = 󰌻X 󰌼(te) for all t ∈ S ∪ S · (At · Σ), e ∈ E. Let 󰌻m(T)󰌼(z) ∕= 󰌻X 󰌼(z)
for some z ∈ GS, and z′ := min(Az). If T ′ = (S,E ∪ suf(z′), row′) with row′(t)(e) =

󰌻X 󰌼(te) is closed, then row′(ε)(e) = 0 for all e ∈ E, but row′(ε)(z′) = 1.

Proof. We begin by showing that z ∕∈ At. Let us assume the opposite, z = α ∈ At ⊆
E. In that case, it follows:

󰌻m(T)󰌼(z) = 󰌻row(ε)󰌼(α) (Definition of 󰌻−󰌼, z)

= row(ε)(α) (Lemma 3.5.1.2)

= 󰌻X 󰌼(α) (row(t)(e) = 󰌻X 󰌼(te))
= 󰌻X 󰌼(z) (Definition of z)

which is a contradiction. Thus there exists a decomposition z = εαpz′ for some

z′ ∈ suf(z). The former immediately implies that the set Az is non-empty. Hence

the shortest suffix z′ := min(Az) is well-defined. By construction, we have row(ε)
v−→

row(sv), x
sv−→ xsv , and 󰌻row(sv)󰌼(αpz′) ∕= 󰌻xsv󰌼(αpz′).

• Assume 󰌻xsv󰌼(αpz′) = 0 and 󰌻row(sv)󰌼(αpz′) = 1, then there exists svαp ∈ S

102 Chapter 3. Learning Guarded Programs

with row(ε)
v−→ row(sv)

αp−→ row(svαp) such that:

1 = 󰌻row(sv)󰌼(αpz′) (Assumption)

= 󰌻row(svαp)󰌼(z′) (Definition of 󰌻−󰌼)
= 󰌻row′(svαp)󰌼(z′) (Lemma 3.5.2.4)

= row′(svαp)(z
′) (Lemma 3.5.1.2)

= row′(svαp)(z
′) (Definition of row′)

= 󰌻X 󰌼(svαpz′) (row′(t)(e) = 󰌻X 󰌼(te))
= 󰌻xsv󰌼(αpz′) (Definition of 󰌻−󰌼)

which contradicts 0 = 󰌻xsv󰌼(αpz′).

• Assume 󰌻xsv󰌼(αpz′) = 1 and 󰌻row(sv)󰌼(αpz′) = 0, then there exists svαp ∈ S

with row′(ε)
v−→ row′(sv)

αp−→ row′(svαp) such that:

1 = 󰌻xsv󰌼(αpz′) (Assumption)

= 󰌻X 󰌼(svαpz′) (Definition of 󰌻−󰌼)
= row′(svαp)(z

′) (row′(t)(e) = 󰌻X 󰌼(te))
= row′(svαp)(z

′) (Definition of row′)

= 󰌻row′(svαp)󰌼(z′) (Lemma 3.5.1.2)

= 󰌻row′(sv)󰌼(αpz′) (Definition of 󰌻−󰌼)

By Lemma 3.5.2.3 there thus are two possibilities:

– Assume row(sv)
αp−→ row(svαp), then there are two options:

∗ If z′ ∕∈ At, we find a contradiction to the minimality of z′ in Az.

3.6. Comparison with Moore Automata 103

∗ If z′ ∈ At ⊆ E, then:

0 = 󰌻row(sv)󰌼(αpz′) (Assumption)

= 󰌻row(svαp)󰌼(z′) (row(sv)
αp−→ row(svαp))

= row(svαp)(z
′) (Lemma 3.5.1.2)

= 󰌻X 󰌼(svαpz′) (row(t)(e) = 󰌻X 󰌼(te))
= 󰌻xsvαp󰌼(z′) (Definition of 󰌻−󰌼)
= 󰌻xsv󰌼(αpz′) (Definition of 󰌻−󰌼)

which is a contradiction to 󰌻xsv󰌼(αpz′) = 1.

– Assume δ(row(sv))(α) = 0, then we have, for all e ∈ E:

0 = row(svαp)(e) (δ(row(sv))(α) = 0)

= row′(svαp)(e) (row(t)(e) = row′(t)(e))

= row′(svαp)(e) (Definition of row′)

= row(svαp)(e) (row(t)(e) = row′(t)(e))

From Definition 3.5.0.1 it follows svαp = ε, which implies the claim.

Let z0 be the shortest suffix of z and zi the suffix of z of length |zi−1| + 1. The

suffix min(Az) can be computed in at most |suf(z)|− 1 steps: verify whether zi ∈ Az,

beginning with z0; if positive, break and set min(Az) := zi, otherwise loop with zi+1.

For example, if T is the closed table in Figure 3.2b with the corresponding hypoth-

esis m(T) in Figure 3.2c and counterexample z = bpbqb, then z′ = min(Az) = bqb,

since b ∕∈ Az. Lemma 3.6.3.1 shows that, instead of adding columns for the two

non-present suffixes bpbqb and bqb of z, it is sufficient to add only one column for the

single non-present suffix bqb of z′. In this case, the counterexample z is relatively

short, thus the number of avoided columns small; in general, however, the advantage

can be more significant.

104 Chapter 3. Learning Guarded Programs

1 2 3 4 5 6 7 8 9

0.5
1

2.5

8
·106

|T | = |{t1, ..., tn}|

M
em

b
er
sh
ip

q
u
er
ie
s
to

󰌻e
󰌼 L∗

GL∗

(a) e = if t1 then do p1 else do p2

1 2 3 4 5 6 7 8 9

0.5
1

2.5

5

8
·106

|T | = |{t1, ..., tn}|

M
em

b
er
sh
ip

q
u
er
ie
s
to

󰌻e
󰌼 L∗

GL∗

(b) e = (while t1 do p1); do p2

Figure 3.6: A comparison between GL∗ and L∗ with respect to membership queries

3.7 Implementation

We have implemented both GL∗ and L∗ in OCaml [122]; the code is available on

GitHub10. The implementation allows one to compare, for any GKAT expression

e ∈ ExprΣ,T , the number of membership queries to 󰌻e󰌼 required by GL∗ for learning

a G-automaton representation of e, with the number of membership queries to 󰌻e󰌼
required by L∗ for learning a M -automaton representation of e. For each run, we

output, for both algorithms, a trace of the involved hypotheses as tables in the .csv

format and graphs in the .dot format, as well as an overview of the involved queries

in the .csv format.

In Figure 3.6a we plot the results for the expression if t1 then do p1 else do p2,

the primitive actions Σ = {p1, p2, p3}, and primitive tests T = {t1, ..., tn} parametric

in n = 1, ..., 9. We find that GL∗ outperforms L∗ for all choices of n. The difference

in the number of membership queries increases with the size of n, as suggested by

Proposition 3.6.2.1. For n = 9 the number of atoms is 29, resulting in an already

relatively large number of queries for both algorithms. The picture is similar in

Figure 3.6b, where we choose the expression (while t1 do p1); do p2, the primitive

actions Σ = {p1, p2}, and primitive tests T = {t1, ..., tn} parametric in n = 1, ..., 9.

10https://github.com/zetzschest/gkat-automata-learning

https://github.com/zetzschest/gkat-automata-learning

3.7. Implementation 105

|Σ| |T | GL∗ L∗

3 1 26 114
3 2 100 444
3 3 392 1.752
3 4 1.552 6.960
3 5 6.176 27.744
3 6 24.640 110.784
3 7 98.432 442.752
3 8 393.472 1.770.240
3 9 1.573.376 7.079.424

(a) e = if t1 then do p1 else do p2

|Σ| |T | GL∗ L∗

2 1 36 78
2 2 102 300
2 3 330 1.176
2 4 1.170 4.656
2 5 4.386 18.528
2 6 16.962 73.920
2 7 66.690 295.296
2 8 264.450 1.180.416
2 9 1.053.186 4.720.128

(b) e = (while t1 do p1); do p2

Figure 3.7: The exact number of membership queries to 󰌻e󰌼 underlying the comparison
between GL∗ and L∗ in Figure 3.6

Again, GL∗ requires significantly less queries in all cases of n, and the difference

increases with the size of n. The exact numbers of membership queries underlying

the graphs in Figure 3.6 can be found in Figure 3.7.

In Figure 3.8 and Figure 3.9 we give concrete examples of the tables and cor-

responding automata our implementations of GL∗ and L∗ deduce. It is instructive

to recall Corollary 3.6.1.2 in this context: the embedding in Figure 3.8b is clearly

isomorphic to the minimal Moore automaton in Figure 3.9b.

Our implementation generates an oracle for L∗ from a GKAT expression e in

the following way. First, we interpret e as a KAT expression ι(e) via the standard

embedding of GKAT into KAT. Next, we generate from the latter a Moore automaton

Xι(e) accepting 󰌻e󰌼, by using Kozen’s syntactic Brzozowksi derivatives for KAT [91].

Finally, we answer an equivalence query from a Moore automaton Y by running a

bisimulation between Xι(e) and Y , similarly to [127, Fig. 1], and a membership query

from wα ∈ GS by returning the value of α at the output of the state in Xι(e) reached

by w, that is, 󰌻e󰌼(wα). A membership query from w ∈ GS− is answered by querying

wα ∈ GS for all α ∈ At.

With the oracle for L∗, we can derive an oracle for GL∗ as follows. Membership

queries wα ∈ GS are delegated and answered by the oracle for L∗ as explained above.

An equivalence query from a GKAT automaton Y is answered by posing an equiv-

alence query to the oracle for L∗ with the Moore automaton f(Y) obtained via the

embedding defined in Lemma 3.6.1.1. If the oracle for L∗ replies with a counterexam-

106 Chapter 3. Learning Guarded Programs

t1 t1
ε 0 0
t1p2 1 1

t1p1 1 1
t1p2 0 0
t1p3 0 0
t1p1 0 0
t1p3 0 0
t1p2t1p1 0 0
t1p2t1p2 0 0
t1p2t1p3 0 0
t1p2t1p1 0 0
t1p2t1p2 0 0
t1p2t1p3 0 0

(a)

row(ε)

⇒ 0t1 + 0t1

󰂏 ⇒ 0t1 + 0t1

row(t1p2)

⇒ 1t1 + 1t1

t1p1, t1p2

{t1, t1} · {p1, p2, p3}

{t1, t1} · {p1, p2, p3}t1p2, t1p3, t1p1, t1p3

(b)

Figure 3.8: For e = if t1 then do p1 else do p2, |Σ| = 3, and |T | = 2, our implemen-
tation of GL∗ accepts the table in (a), which induces the automaton in (b).

ple z ∈ GS−, we extend z with an α ∈ At such that 󰌻Y 󰌼(zα) ∕= 󰌻e󰌼(zα).

3.8 Related Work

GKAT is a variation on KAT [92] that one obtains by restricting the union and

iteration operations from KAT to guarded versions. While GKAT is less expressive

than KAT, term equivalence is notably more efficiently decidable [142, 92], making it

a candidate for the foundations of network-programming [143, 12, 57]

GKAT automata appear in the literature already prior to [142], e.g. in the work of

Kozen [93] under the name strictly deterministic automata. In the latter, Kozen states

that GKAT automata correspond to a limited class of automata with guarded strings

(AGS) [89], for which he gives determinisation and minimisation constructions. In a

different paper [91] Kozen introduces a second definition of (deterministic) AGS as

Moore automata, and states the difference to the definition in [89] is inessential.

Recently, a new perspective on the semantics and coalgebraic theory of GKAT

has been given in terms of coequations [135, 46]. Using the Thompson construction,

it is possible to construct for every expression e a language equivalent automaton Xe.

In [93] it was shown that in general there is no reverse construction: there exists a

3.8. Related Work 107

ε t1p1t1p2 t1p2
ε 0t1 + 0t1 0t1 + 0t1 1t1 + 1t1
t1p1 0t1 + 0t1 0t1 + 0t1 0t1 + 0t1
t1p2 1t1 + 1t1 0t1 + 0t1 0t1 + 0t1

t1p1 1t1 + 1t1 0t1 + 0t1 0t1 + 0t1
t1p2 0t1 + 0t1 0t1 + 0t1 0t1 + 0t1
t1p3 0t1 + 0t1 0t1 + 0t1 0t1 + 0t1
t1p1t1p1 0t1 + 0t1 0t1 + 0t1 0t1 + 0t1
t1p1t1p2 0t1 + 0t1 0t1 + 0t1 0t1 + 0t1
t1p1t1p3 0t1 + 0t1 0t1 + 0t1 0t1 + 0t1
t1p1t1p1 0t1 + 0t1 0t1 + 0t1 0t1 + 0t1
t1p1t1p2 0t1 + 0t1 0t1 + 0t1 0t1 + 0t1
t1p1t1p3 0t1 + 0t1 0t1 + 0t1 0t1 + 0t1
t1p2t1p1 0t1 + 0t1 0t1 + 0t1 0t1 + 0t1
t1p2t1p2 0t1 + 0t1 0t1 + 0t1 0t1 + 0t1
t1p2t1p3 0t1 + 0t1 0t1 + 0t1 0t1 + 0t1
t1p2t1p1 0t1 + 0t1 0t1 + 0t1 0t1 + 0t1
t1p2t1p2 0t1 + 0t1 0t1 + 0t1 0t1 + 0t1
t1p2t1p3 0t1 + 0t1 0t1 + 0t1 0t1 + 0t1

(a)

row(ε)

⇒ 0t1 + 0t1

row(t1p1) ⇒ 0t1 + 0t1

row(t1p2)

⇒ 1t1 + 1t1

t1p1, t1p2

{t1, t1} · {p1, p2, p3}

{t1, t1} · {p1, p2, p3}t1p2, t1p3, t1p1, t1p3

(b)

Figure 3.9: For e = if t1 then do p1 else do p2, |Σ| = 3, and |T | = 2, our implemen-
tation of L∗ accepts the table in (a), which induces the automaton in (b).

GKAT automaton that is inequivalent to Xe for all expressions e. In consequence,

[142] proposed a subclass of well-nested automata and showed that every finite well-

nested automaton is bisimilar to Xe for some e. In [135] it was shown that well-

nestedness is in fact too restrictive: there exists an automaton that is bisimilar to Xe

for some e, but not well-nested. To capture the full class of automata exhibiting the

behaviour of expressions, one has to extend the class of well-nested automata to the

class of automata satisfying the nesting coequation, which forms a covariety [46] (cf.

Proposition 3.4.1.8) .

Regular inference, or active automata learning, is a technique used for deriving a

model from a black-box by interacting with it via observations. The original algorithm

L∗ by Angluin [14] learns deterministic finite automata, but since then has been

extended to other classes of automata [16, 1, 112], including Moore automata, as we

have seen in Section 1.3. Typically, algorithms such as L∗ are designed to output for a

given language a unique minimal acceptor. Not all classes admit a canonical minimal

acceptor, for instance, learning non-deterministic models is a challenge [49, 31, 161,

66], as is shown in detail in Chapter 4.

108 Chapter 3. Learning Guarded Programs

3.9 Discussion and Future Work

We have presented GL∗, an algorithm for learning the GKAT automaton represen-

tation of a black-box, by observing its behaviour via queries to an oracle. We have

shown that for every normal GKAT automaton there exists a unique size-minimal

normal automaton, accepting the same language: its minimisation. We have identi-

fied the minimisation with an alternative but equivalent construction, and derived its

preservation of the nesting coequation. A central result showed that if the oracle in

GL∗ is instantiated with the language accepted by a finite normal automaton, then

GL∗ terminates with its minimisation. A complexity analysis showed the advantage

of GL∗ over L∗ for learning automata representations of GKAT programs in terms of

membership queries. We discussed additional optimizations, and implemented GL∗

and L∗ in OCaml to compare their performances on example programs.

There are numerous directions in which the present work could be further explored.

In Section 3.6.3 we introduced an optimization for GL∗ which is inspired by Rivest

and Schapire’s counterexample handling method for L∗ [130]. The oberservation pack

algorithm for L∗ [71] has successfully combined Rivest and Schapire’s method with an

efficient discrimination tree data structure [83]. The state-of-the-art TTT -algorithm

[74] for L∗ extends the former with discriminator finalization techniques. It thus

is natural to ask whether for GL∗ there exist similar data structures, potentially

exploiting the deterministic nature of the languages accepted by GKAT automata.

While L∗ has seen major improvements over the years and has inspired numerous

variations for different types of transition systems, all approaches remain in common

their focus on the equivalence of observations. The recently presented L󰂒 algorithm

[154] takes a different perspective: it instead focuses on apartness, a constructive

form of inequality. L󰂒 does not require data-structures such as observation tables or

discrimination trees, instead operating directly on tree-shaped automata. It remains

open whether a similar shift in perspective is feasible for GL∗.

There exist various domain-specific extensions of KAT (e.g. KAT+B! [60], NetKAT

[12], ProbNetKAT [58]), and similar directions have been proposed for GKAT. It has

been noted that GKAT is better fit for probabilistic domains than KAT, as it avoids

mixing non-determinism with probabilities [143]. Due to its foundations in KAT,

3.9. Discussion and Future Work 109

NetKAT’s decision procedure is PSPACE-complete, thus hindering verification to

scale. In contrast to KAT, the equational theory of GKAT is decidable in (almost)

linear time, making GKAT an interesting alternative candidate for the foundations of

a SDN programming language like NetKAT. While there currently exists no explicit

automata learning algorithm for NetKAT in the style of L∗, there is work closely re-

lated [141, 57]. Generally, we expect that in the future, for any extension of GKAT,

there will be interest in developing the corresponding automata (learning) theories.

110 Chapter 3. Learning Guarded Programs

Chapter 4

Canonical Automata

In Chapter 3 we explored the automata theory of GKAT and presented GL∗, an al-

gorithm for learning a GKAT automaton by observing the behaviour of a black-box.

The design of GL∗ started with us assigning to a GKAT automaton a language equiva-

lent second automaton – its minimisation. The algorithm itself has been a derivation

of this construction: for a given language, it iteratively refines approximations of the

canonical minimal target model we have proven to exist. In this chapter, we will

investigate canonical target models of more general type.

The classical powerset construction is a standard method that is used to convert a

non-deterministic automaton into a deterministic one recognising the same language.

In [140], the powerset construction has been lifted to a more general framework that

converts an automaton with side-effects, given by a monad, into a deterministic au-

tomaton accepting the same language. The resulting automaton has additional al-

gebraic properties, in the state space and transition structure, inherited from the

monad. We will study the reverse construction and present a framework in which a

deterministic automaton with additional algebraic structure over a given monad can

be converted into an equivalent succinct automaton with side-effects. Apart from

recovering examples from the literature, such as the canonical residual finite-state

automaton and the átomaton, we discover a new canonical automaton for a regular

language by relating the free vector space monad over the two element field to the

neighbourhood monad. Finally, we show that every regular language satisfying a

suitable property parametric in two monads admits a size-minimal succinct acceptor.

111

112 Chapter 4. Canonical Automata

a

b

c

b, c

a, c

a, b

b, c

a, c

a, b

a

b

c

Figure 4.1: Two non-isomorphic size-minimal NFA accepting the language {ab, ac,
ba, bc, ca, cb} ⊆ {a, b, c}∗ [20]

4.1 Introduction

The existence of a unique minimal deterministic acceptor is an important property

of regular languages. Establishing a similar result for non-deterministic acceptors is

of great practical importance, as non-deterministic automata can be exponentially

more succinct than deterministic ones. Unfortunately, a regular language can be

accepted by several size-minimal NFAs that are not isomorphic. In Figure 4.1 we

give one example of such behaviour. A number of sub-classes of non-deterministic

automata have been identified in the literature to tackle this issue, which all admit

canonical representatives: the átomaton [39], the canonical residual finite-state au-

tomaton (short canonical RFSA and also known as jiromaton) [49], the minimal xor

automaton [156], and the distromaton [119].

In this chapter we provide a general categorical framework that unifies construc-

tions of canonical non-deterministic automata and unveils new ones. Our framework

adopts the well-known representation of side-effects via monads (Definition 2.2.0.7) to

generalise non-determinism in automata. For instance, an NFA (without initial states)

can be represented as a pair (X, k), whereX is the set of states and k : X → 2×P(X)A

combines the function classifying each state as accepting or rejecting with the function

giving the set of next states for each input. The powerset forms a monad (P , {−}, µ),
where {−} creates singleton sets and µ takes the union of a set of sets. This allows

describing the classical powerset construction, converting an NFA into a DFA, in cat-

egorical terms as depicted on the left of Figure 4.2, where k󰂒 : P(X) → 2 × P(X)A

4.1. Introduction 113

X P(X) 2A
∗

2× P(X)A 2× (2A
∗
)A

k

{−}

k󰂒

obs

〈ε,δ〉

2×obsA

X TX Ω

FTX FΩ

k

η

k󰂒

obs

ω

Fobs

.

Figure 4.2: Generalised determinisation of automata with side-effects in a monad

represents an equivalent DFA1, obtained by taking the subsets of X as states and

〈ε, δ〉 : 2A∗ → 2 × (2A
∗
)A is the automaton of languages. There then exists a unique

automaton homomorphism obs, assigning a language semantics to each set of states.

As seen on the right of Figure 4.2 this perspective further enables a generalised de-

terminisation construction [140], where 2× (−)A is replaced by any (suitable) functor

F describing the automaton structure, and P by a monad T describing the automa-

ton side-effects. In this picture, Ω
ω−→ FΩ is the final coalgebra (Definition 2.2.0.13),

providing a semantic universe that generalises the automaton of languages.

Our work starts from the observation that the deterministic automata resulting

from this generalised determinisation constructions have additional algebraic struc-

ture: the state space P(X) of the determinised automaton defines a free complete

join-semilattice (CSL) over X, and k󰂒 and obs are CSL homomorphisms. More gen-

erally, TX defines a (free) algebra for the monad T , and k󰂒 and obs are T -algebra

homomorphisms (Definition 2.2.0.9).

With this observation in mind, our question is: can we exploit the additional

algebraic structure to “reverse” these constructions? In other words, can we convert

a deterministic automaton with additional algebraic structure over a given monad to

an equivalent succinct automaton with side-effects, possibly over another monad? To

answer this question, we make the following contributions:

• We present a categorical framework based on bialgebras (Definition 4.3.0.8)

and distributive law homomorphisms (Definition 4.5.1.1) that allows deriving

canonical representatives for a wide class of succinct automata with side-effects

in a monad.

1The classical powerset determinisation of k = 〈ε, δ〉 : X → 2×P(X)A is k󰂒 = 〈ε󰂒, δ󰂒〉 : P(X) →
2× P(X)A, where ε󰂒(U) = ∨x∈Uε(x) and δ󰂒(U)(a) = ∪x∈Uδ(x)(a).

114 Chapter 4. Canonical Automata

• We strictly improve the expressivity of previous work [67, 19]: our framework

instantiates not only to well-known examples such as the canonical RFSA (Ex-

ample 4.4.0.9) and the minimal xor automaton (Example 4.4.0.13), but also in-

cludes the átomaton (Section 4.5.3) and the distromaton (Section 4.5.4), which

were not covered in [67, 19]. While other frameworks restrict themselves to

the category of sets [67], we are able to include canonical acceptors in other

categories, such as the canonical nominal RFSA (Example 4.4.0.12).

• We relate vector spaces over the unique two element field with complete atomic

Boolean algebras and consequently discover a previously unknown canonical

mod-2 weighted acceptor for regular languages—the minimal xor-CABA au-

tomaton (Section 4.5.5)—that in some sense is to the minimal xor automaton

what the átomaton is to the canonical RFSA (Figure 4.10).

• We introduce an abstract notion of closedness for succinct automata that is

parametric in two monads (Definition 4.6.0.2), and prove that every regular

language satisfying a suitable property admits a canonical size-minimal repre-

sentative among closed acceptors (Theorem 4.6.0.5). By instantiating the latter

we subsume known minimality results for canonical automata, prove the xor-

CABA automaton minimal, and establish a size comparison between different

acceptors (Section 4.6.1).

4.2 Overview of the Approach

In this section, we give an overview of the ideas of this chapter through an example.

We show how our methodology allows recovering the construction of the átomaton

for the regular language L = (a + b)∗a, which consists of all words over A = {a, b}
that end in a. For each step, we hint at how it is generalised in our framework.

The classical construction of the átomaton for L consists in closing the residu-

als2 of L under all Boolean operations, and then forming a non-deterministic au-

2A language is a residual or left quotient of L ⊆ A∗, if it is of the form v−1L = {u ∈ A∗ | vu ∈ L}
for some v ∈ A∗.

4.2. Overview of the Approach 115

x y

b

a

a

b .

Figure 4.3: The minimal DFA for L = (a+ b)∗a

tomaton whose states are the atoms3 of the ensuing complete atomic4 Boolean alge-

bra (CABA)—that is, non-empty intersections of complemented or uncomplemented

residuals. In our categorical setting, this construction is obtained in several steps,

which we now describe.

4.2.1 Computing Residuals

We first construct the minimal DFA accepting L as a coalgebra of type ML → 2 ×
(ML)

A . By the well-known Myhill-Nerode theorem [120], ML is the set of residuals

for L. The automaton is depicted in Figure 4.3.

In our framework, we consider coalgebras over an arbitrary endofunctor F : C →
C (F = 2 × (−)A and C = Set in this case), as introduced in Definition 2.2.0.12.

Minimal realisations, generalising minimal DFAs, exist for a wide class of functors F

and categories C , including all the examples in this chapter.

4.2.2 Taking the Boolean Closure

We close the minimal DFA under all Boolean operations, generating an equivalent

deterministic automaton that has additional algebraic structure: its state space is a

CABA. This is achieved via a double powerset construction—where sets of sets are

interpreted as full disjunctive normal form—and the resulting coalgebra is of type

P2(ML) → 2 × (P2(ML))
A. Our construction relies on the neighbourhood monad H

(Examples 2.2.0.8), whose algebras are precisely CABAs, and yields a (free) bialgebra

3A non-zero element a in a Boolean algebra B is called an atom, if for all x ∈ B with x ≤ a it
follows x = 0 or x = a.

4A Boolean algebra B is atomic, if for all x ∈ B there exists a decomposition x = ∨Iai, where
{ai | i ∈ I} is some set of atoms.

116 Chapter 4. Canonical Automata

[{{x}, {x, y}}] [∅]

[{{x}, {y}, {x, y}}] [{{y}}]

[{∅}] [{{x, y}, ∅}]

[{{y}, ∅}] [{{x}, {y}, {x, y}, ∅}]

a, bb

a a, b

a

b b

a

a, ba

b a, b

∧ 1 2 3 4 5 6 7 8
1 1 2 2 1 1 2 2 1
2 2 2 2 2 2 2 2 2
3 2 2 3 3 2 2 3 3
4 1 2 3 4 1 2 3 4
5 1 2 2 1 5 6 6 5
6 2 2 2 2 6 6 6 6
7 2 2 3 3 6 6 7 7
8 1 2 3 4 5 6 7 8

¬
1 7
2 8
3 5
4 6
5 3
6 4
7 1
8 2

Figure 4.4: The minimal CABA-structured DFA for L = (a + b)∗a, where 1 ≡
[{{x}, {x, y}}], 2 ≡ [∅], 3 ≡ [{∅}], 4 ≡ [{{x, y}, ∅}], 5 ≡ [{{x}, {y}, {x, y}}],
6 ≡ [{{y}}], 7 ≡ [{{y}, ∅}], 8 ≡ [{{x}, {y}, {x, y}, ∅}]

capturing both the coalgebraic and the algebraic structure; the interplay of these two

structures is captured via a distributive law. We then minimise this DFA to identify

Boolean expressions evaluating to the same language. As desired, the resulting state

space is precisely the Boolean closure of the residuals of L. Formally, we obtain the

minimal bialgebra for L depicted in Figure 4.4.

This step in our framework is generalised as closure of an F -coalgebra w.r.t (the

algebraic structured induced by) any monad S for which a suitable distributive law

λ with the coalgebra endofunctor F exists. The first step of the closure yields a free

λ-bialgebra, comprised of both an F -coalgebra and an S-algebra over the same state

space. In a second step, minimisation is carried out in the category of λ-bialgebras,

which guarantees simultaneous preservation of the algebraic structure and of the

language semantics.

4.2.3 Constructing the Átomaton

This step is the key technical result of this chapter. Atoms have the property that

their Boolean closure generates the entire CABA. In our framework, this property is

generalised via the notion of generators for algebras over a monad, which allows one

to represent a bialgebra as an equivalent free bialgebra over its generators, and hence

to obtain succinct canonical representations (Proposition 4.4.0.5). In Section 4.4 we

apply this result to obtain the canonical RFSA, the canonical nominal RFSA, and

4.3. Distributive Laws and Bialgebras 117

[{{x}, {x, y}}] [{{y}}] [{∅}]

a, b

a

a, b

b

.

Figure 4.5: The átomaton for L = (a+ b)∗a

the minimal xor automaton for a given regular language.

However, to recover the átomaton from the minimal CABA-structured DFA of the

previous step, in addition a subtle change of perspective is required. In fact, we are

still working with the “wrong” side-effect: the non-determinism of bialgebras so far

is determined by H, whereas we are interested in an NFA, whose non-determinism is

captured by the powerset monad P . As is well-known, every element of a CABA can

be obtained as the join of the atoms below it. In other words, those atoms are also

generators of the underlying CSL, which is an algebra for P . We formally capture

this idea as a map between monads H → P . Crucially, we show that this map lifts

to a distributive law homomorphism and allows translating a bialgebra over H to

a bialgebra over P , which can be represented as a free bialgebra over atoms—the

átomaton for L, which is shown in Figure 4.5.

In Section 4.5 we generalise this idea to the situation of two monads S and T

involved in distributive laws with the coalgebra endofunctor F . In particular, Corol-

lary 4.5.1.3 is our free representation result, spelling out a condition under which a

bialgebra over S can be represented as a free bialgebra over T , and hence admits an

equivalent succinct representation as an automaton with side-effects in T . Besides

the átomaton and the examples in Section 4.4, this construction allows us to capture

the distromaton and a newly discovered canonical acceptor that relates CABAs with

vector spaces over the two element field.

4.3 Distributive Laws and Bialgebras

In this section, we briefly recall distributive laws and bialgebras, which form the

technical foundations of our category-theoretical framework.

Distributive laws have originally occurred as a way to compose monads [25], but

118 Chapter 4. Canonical Automata

now also exist in a wide range of other forms [147]. For our particular case it is suffi-

cient to consider distributive laws between a monad and an endofunctor, sometimes

referred to as Eilenberg-Moore laws [81].

Definition 4.3.0.1 (Distributive Law). A distributive law between a monad T and

an endofunctor F on C is a natural transformation λ : TF ⇒ FT such that the

following two diagrams commute:

FX FTX

TFX

FηX

TFX λX

T 2FX TFTX FT 2X

TFX FTX

µFX

TλX λTX

FµX

λX

.

We are particularly interested in canonically induced distributive laws involving

the endofunctor F with FX = B ×XA. The following statement is well-known and

appears for instance in [75]. We include a proof of the result, since we were unable to

locate one in the literature. Note that the result can easily be generalised to a strong

monad on any cartesian closed category.

Lemma 4.3.0.2. Every algebra h : TB → B for a set monad T induces a distributive

law λh between T and F with FX = B ×XA defined as the composition

λh
X := T (B ×XA)

〈Tπ1,Tπ2〉−→ T (B)× T (XA)
h×st−→ B × (TX)A, (4.1)

where st denotes the canonical strength function5.

Proof. The naturality of λh essentially follows from the naturality of the strength

function. The equation involving the monad unit is a consequence of

π1 ◦ (h× st) ◦ 〈Tπ1, Tπ2〉 ◦ ηB×XA

= h ◦ Tπ1 ◦ ηB×XA (Definition of π1)

= h ◦ ηB ◦ π1 (Naturality of η)

= π1 ◦ (B × ηAX) (Definition of π1, h ◦ ηB = idB)

5For any two sets X,A the strength function st : T (XA) → (TX)A is defined by st(U)(a) =
T (eva)(U), where eva(f) = f(a).

4.3. Distributive Laws and Bialgebras 119

and the chain of equalities

π2 ◦ (h× st) ◦ 〈Tπ1, Tπ2〉 ◦ ηB×XA = st ◦ Tπ2 ◦ ηB×XA (Definition of π2)

= st ◦ ηXA ◦ π2 (Naturality of η)

= ηAX ◦ π2 (st ◦ ηXA = ηAX)

= π2 ◦ (B × ηAX) (Definition of π2)

Similarly, the equation involving the monad multiplication is a consequence of

π1 ◦ (B × µA
X) ◦ (h× st) ◦ 〈Tπ1, Tπ2〉 ◦ T (h× st) ◦ T 〈Tπ1, Tπ2〉

= (Definition of π1)

h ◦ Th ◦ T 2π1

= (h ◦ Th = h ◦ µB)

h ◦ µB ◦ T 2π1

= (Naturality of µ)

h ◦ Tπ1 ◦ µB×XA

= (Definition of π1)

π1 ◦ (h× st) ◦ 〈Tπ1, Tπ2〉 ◦ µB×XA

and the equalities

π2 ◦ (B × µA
X) ◦ (h× st) ◦ 〈Tπ1, Tπ2〉 ◦ T (h× st) ◦ T (Tπ1, Tπ2)

= (Definition of π2)

µA
X ◦ st ◦ T (st) ◦ T 2π2

= (µA
X ◦ st ◦ T (st) = st ◦ µXA)

st ◦ µXA ◦ T 2π2

= (Naturality of µ)

st ◦ Tπ2 ◦ µB×XA

= (Definition of π2)

π2 ◦ (h× st) ◦ 〈Tπ1, Tπ2〉 ◦ µB×XA

120 Chapter 4. Canonical Automata

Of particular importance for us are the canonical algebra structures for the output

set B = 2. For instance, the algebra structures defined by hP(ϕ) = hR(ϕ) = ϕ(1)

and hH(Φ) = hA(Φ) = Φ(id2), where we identify subsets with their characteristic

functions, and R and A denote the free vector space monad over the unique two

element field Z2, and the monotone neighbourhood monad, respectively (cf. Exam-

ples 2.2.0.8). In these cases we will abuse notation and write λT instead of λhT
. The

soundness of the definitions is witnessed by the following four short results.

Lemma 4.3.0.3. The morphism hP : P2 → 2 satisfying ϕ 󰀁→ ϕ(1) defines a P-

algebra.

Proof. On the one hand we find

hP ◦ µP
2 (Φ)

= µP
2 (Φ)(1) (Definition of hP)

= ∨ϕ∈22 Φ(ϕ) ∧ ϕ(1) (Definition of µP
2)

= (∨ϕ∈(hP)−1(1)Φ(ϕ) ∧ ϕ(1)) ∨ (∨ϕ∈(hP)−1(0)Φ(ϕ) ∧ ϕ(1)) (Case split)

= (∨ϕ∈(hP)−1(1)Φ(ϕ) ∧ ϕ(1)) ∨ (∨ϕ∈(hP)−1(0)Φ(ϕ) ∧ 0) (ϕ ∈ (hP)−1(0))

= (∨ϕ∈(hP)−1(1)Φ(ϕ) ∧ ϕ(1)) ∨ (∨ϕ∈(hP)−1(0)0) (a ∧ 0 = 0)

= (∨ϕ∈(hP)−1(1)Φ(ϕ) ∧ ϕ(1)) ∨ 0 (0 ∨ 0 = 0)

= ∨ϕ∈(hP)−1(1) Φ(ϕ) ∧ ϕ(1) (a ∨ 0 = a)

= ∨ϕ∈(hP)−1(1) Φ(ϕ) ∧ 1 (ϕ ∈ (hP)−1(1))

= ∨ϕ∈(hP)−1(1) Φ(ϕ) (a ∧ 1 = a)

= P(hP)(Φ)(1) (Definition of P(hP))

= hP ◦ P(hP)(Φ) (Definition of hP)

4.3. Distributive Laws and Bialgebras 121

and on the other hand we can deduce

hP ◦ ηP2 (x) = ηP2 (x)(1) (Definition of hP)

= [x = 1] (Definition of ηP2)

= x (Definition of [·])

where [x = y] is 1, if x = y, and 0 otherwise.

As one verifies, under the equivalence SetP ∼= CSL, the morphism hP equips 2

with its canonical complete join-semilattice structure (2,∨).

Lemma 4.3.0.4. The morphism hH : H2 → 2 assigning Φ 󰀁→ Φ(id2) defines an

H-algebra.

Proof. Since ηH22(id2)(Φ) = Φ(id2) = hH(Φ) we find

hH ◦ µH
2 (Ψ) = µH

2 (Ψ)(id2) (Definition of hH)

= Ψ(ηH22(id2)) (Definition of µH
2)

= Ψ(id2 ◦ hH) (ηH22(id2) = hH)

= H(hH)(Ψ)(id2) (Definition of H(hH))

= hH ◦H(hH)(Ψ) (Definition of hH)

We further can deduce

hH ◦ ηHX(x) = ηHX(x)(id2) (Definition of hH)

= id2(x) (Definition of ηHX)

= x (Definition of id2)

As one verifies, under the equivalence SetH ∼= CABA, the morphism hH equips 2

with its canonical complete atomic Boolean algebra structure (2,∨,∧,¬).

Lemma 4.3.0.5. The morphism hA : A2 → 2 assigning Φ 󰀁→ Φ(id2) defines an

A-algebra.

122 Chapter 4. Canonical Automata

Proof. Analogous to the proof of Lemma 4.3.0.4.

As one verifies, under the equivalence SetA ∼= CDL, the morphism hA equips 2

with its canonical completely distributive lattice structure (2,∨,∧).

Lemma 4.3.0.6. The morphism hR : R2 → 2 satisfying ϕ 󰀁→ ϕ(1) defines an R-

algebra.

Proof. Analogous to the proof of Lemma 4.3.0.3, after observing that a ∧ 0 = 0,

0⊕ 0 = 0, a⊕ 0 = a and a ∧ 1 = a for all a ∈ 2.

As one verifies, under the equivalence SetR ∼= Z2-Vect, the morphism hR equips 2

with its canonical Z2-vector space structure Z2
∼= (2,⊕,∧).

Example 4.3.0.7 (Generalised Determinisation [133]). Given a distributive law, one

can model the determinisation of a system with dynamics in F and side-effects in T

(sometimes referred to as succinct automaton) by lifting an FT -coalgebra (X, k) to

the F -coalgebra (TX, k󰂒), where k󰂒 := (FµX ◦λTX)◦Tk. As one verifies, the latter is
in fact a T -algebra homomorphism of type k󰂒 : (TX, µX) → (FTX,FµX ◦ λTX). For

instance, if the distributive law λ is induced by the disjunctive P-algebra hP : P2 → 2

with hP(ϕ) =
󰁚

u∈ϕ u = ϕ(1), the lifting k󰂒 is the DFA in CSL obtained from an NFA

k via the classical powerset construction.

The example above illustrates the concept of a bialgebra: the algebraic part

(TX, µX) and the coalgebraic part (TX, k󰂒) of a lifted automaton are compatible

along the distributive law λ.

Definition 4.3.0.8 (Bialgebra). A λ-bialgebra is a tuple (X, h, k) consisting of a T -

algebra (X, h) and an F -coalgebra (X, k) such that the following diagram commutes:

TX X

TFX FTX FX

h

Tk k

λX Fh

A homomorphism between λ-bialgebras is a morphism between the underlying

objects that is simultaneously a T -algebra homomorphism and an F -coalgebra homo-

morphism. The category of λ-bialgebras and homomorphisms is denoted by Bialg(λ).

4.4. Succinct Automata from Bialgebras 123

The existence of a final F -coalgebra is equivalent to the existence of a final λ-

bialgebra, as the next result shows.

Lemma 4.3.0.9 ([81]). Let (Ω, kΩ) be the final F -coalgebra, then (Ω, hΩ, kΩ) with

hΩ := obs(TΩ,λΩ◦TkΘ) is the final λ-bialgebra satisfying obs(X,h,k) = obs(X,k). Con-

versely, if (Ω, hΩ, kΩ) is the final λ-bialgebra, then (Ω, kΩ) is the final F -coalgebra.

For the distributive law in Example 4.3.0.7, the final bialgebra is carried by the

final coalgebra P(A∗) with the free P-algebra structure that takes the union of lan-

guages.

The generalised determinisation in Example 4.3.0.7 can be rephrased as a functor

expT that expands an F -coalgebra with side-effects in T into a λ-bialgebra.

Lemma 4.3.0.10 ([81]). Defining expT (X, k) := (TX, µX , (FµX ◦ λTX) ◦ Tk) and
expT (f) := Tf yields a functor expT : Coalg(FT) → Bialg(λ).

We will also refer to the functor freeT that arises from expT by pre-composition

with the canonical embedding of F -coalgebras into FT -coalgebras, therefore assigning

to an F -coalgebra the λ-bialgebra it freely generates.

Corollary 4.3.0.11. Defining freeT (X, k) := (TX, µX ,λX ◦ Tk) and freeT (f) := Tf

yields a functor freeT : Coalg(F) → Bialg(λ) with freeT (X, k) = expT (X,FηX ◦ k).

4.4 Succinct Automata from Bialgebras

In this section we discuss the foundations of our theoretical contributions. We begin

by recalling the notion of a generator [19] and demonstrate how it can be used to

translate a bialgebra into an equivalent free bialgebra. While the treatment is very

general, we are particularly interested in the case in which the bialgebra is given by a

deterministic automaton that has additional algebraic structure over a given monad,

and the translation results in an automaton with side-effects in that monad. We will

demonstrate that the theory in this section instantiates to the canonical RFSA [49],

the canonical nominal RFSA [111], and the minimal xor automaton [156].

124 Chapter 4. Canonical Automata

Definition 4.4.0.1 (Generator and Basis). A generator for a T -algebra (X, h) is

a tuple (Y, i, d) consisting of an object Y , a morphism i : Y → X, and a morphism

d : X → TY such that (h◦T i)◦d = idX . A generator is called a basis if it additionally

satisfies d ◦ (h ◦ T i) = idTY , that is, the following two diagrams commute:

X X

TY TX

d

idX

T i

h

TY TY

TX X

T i

idTY

h

d .

A generator for an algebra is called a scoop by Arbib and Manes [19]. Here, we

additionally introduce an abstract perspective on the notion of a basis. Intuitively,

one calls a set Y that is embedded into an algebraic structure X a generator for

the latter if every element x ∈ X admits a decomposition d(x) ∈ TY into a formal

combination of elements of Y that evaluates to x. If the decomposition is moreover

unique, that is, h ◦ T i is not only a surjection with right-inverse d, but a bijection

with two-sided inverse d, then a generator is called a basis. Every algebra is generated

by itself using the generator (X, idX , ηX) and every free algebra (TY, µY) admits the

basis (Y, ηY , idTY). In fact, an algebra admits a basis if and only if it is isomorphic

to a free algebra (cf. Lemma 4.4.0.7). We are particularly interested in classes of

set-based algebras for which every algebra admits a size-minimal generator, that is,

no generator has a carrier of smaller size. In such a situation we will also speak of

canonical generators.

Example 4.4.0.2. • A tuple (Y, i, d) is a generator for a P-algebra L = (X, h) ≃
(X,∨h) iff x = ∨h

y∈d(x)i(y) for all x ∈ X, where we write ∨h for the complete

join-semilattice structure induced by h. Note that if Y ⊆ X is a subset, then

i(y) = y for all y ∈ Y . If L satisfies the descending chain condition6 (DCC),

which is in particular the case if X is finite, then defining i(y) = y and d(x) =

{y ∈ J(L) | y ≤ x} turns the set of join-irreducibles7 J(L) into a size-minimal

generator (J(L), i, d) for L, cf. Lemma 4.4.0.3 below.

6A partially ordered set (P,≤) satisfies the descending chain condition if any descending chain
a0 ≥ a1 ≥ a2 ≥ ... in P stabilises, that is, there exists some n ≥ 0, such that an = an+k for all k ≥ 0.

7A non-zero element a in a lattice L is called join-irreducible, if for all y, z ∈ L with a = y ∨ z it
follows a = y or a = z.

4.4. Succinct Automata from Bialgebras 125

• A tuple (Y, i, d) is a generator for an R-algebra V = (X, h) ≃ (X,+h, ·h) iff

x =
󰁓h

y∈Y d(x)(y) ·h i(y) for all x ∈ X, where we write +h and ·h for the Z2-

vector space structure induced by h. As it is well-known that every vector space

can be equipped with a basis, every R-algebra V admits a basis. One can show

that any finite basis is a size-minimal generator, cf. Lemma 4.4.0.4 below.

Lemma 4.4.0.3. For any finite P-algebra L = (X, h) the join-irreducibles (J(L), i, d)

with i(y) = y and d(x) = {y ∈ J(L) | y ≤ x} constitute a size-minimal generator.

Proof. Since L is finite, it satisfies the DCC, which in turn can be used to show that

the join-irreducibles constitute a generator as follows.

Assume there exists some x ∈ X with x ∕= i󰂒(d(x)). We build an infinite sequence

(an) with ai > ai+1 and ai ∕= i󰂒(d(ai)), which contradicts the DCC. For the base

case we define a0 := x. For any x ∈ X, the property x ∈ J(L) immediately implies

x = i󰂒(d(x)). Thus we can assume ai ∕∈ J(L). In consequence we have ai = y ∨ z for

y, z ∕= ai, i.e ai > y and ai > z. Assume y = i󰂒(d(y)) and z = i󰂒(d(z)). Then

i󰂒(d(ai)) ≤ ai = y ∨ z = i󰂒(d(y)) ∨ i󰂒(d(z)) = i󰂒(d(y) ∨ d(z)) ≤ i󰂒(d(ai)).

It thus follows ai = i󰂒(d(ai)), which is a contradiction. Hence, w.l.o.g. assume

y ∕= i󰂒(d(y)) and define ai+1 := y.

Let (Y, i′, d′) be an arbitrary generator for L. For any a ∈ J(L) we have a =

∨h
y∈d′(a)i

′(y). By the definition of join-irreducibles there exists at least one ya ∈ d′(a)

such that i′(ya) = a. One can thus define a function f : J(L) → Y with f(a) = ya.

Assume f(a) = f(b), i.e. ya = yb. Then, by definition,

a = i′(ya) = i′(yb) = b

which shows that f is injective. It thus follows |J(L)| ≤ |Y |.

Lemma 4.4.0.4. Any finite basis for an R-algebra is a size-minimal generator.

Proof. Let (Y, i, d) be a basis for an R-algebra (X, h) with Y being finite. It immedi-

ately follows that RY = 2Y . Let (Y ′, i′, d′) be any other generator for (X, h). We can

assume that Y ′ is finite, as otherwise Y would be immediately of smaller size. It thus

126 Chapter 4. Canonical Automata

follows that RY ′ = 2Y
′
. By definition, d : X → RY is a bijection with inverse h◦Ri,

and h ◦Ri′ : RY ′ → X is a surjection. We thus know that d ◦ h ◦Ri′ : RY ′ → RY

is a surjection. In consequence we find that |RY | ≤ |RY ′|. Assume |Y ′| < |Y |, then
we can deduce

|RY ′| = |2Y ′ | = |2||Y ′| < |2||Y | = |2Y | = |RY |,

which contradicts |RY | ≤ |RY ′|. We thus can conclude that |Y ′| ≥ |Y |.

It is enough to find generators for the underlying algebra of a bialgebra to derive an

equivalent free bialgebra. This is because the algebraic and coalgebraic components

are tightly intertwined via a distributive law.

Proposition 4.4.0.5. Let (X, h, k) be a λ-bialgebra and let (Y, i, d) be a generator

for the T -algebra (X, h). Then h◦T i : expT ((Y, Fd◦k◦i)) → (X, h, k) is a λ-bialgebra

homomorphism.

Proof. By definition we have the equality

expT ((Y, Fd ◦ k ◦ i)) = (TY, µY , FµY ◦ λTY ◦ T (Fd ◦ k ◦ i)).

It is well-known that h ◦ T i is a homomorphism between the underlying T -algebra

structures. It thus remains to show that it is an F -coalgebra homomorphism. The

latter follows from the commutativity of the diagram below:

TY TX X

TX

TFX TFX

TFTY TFTX

FT 2Y FT 2X FTX

FTY FTX FX FX

T i

T i

Tk

h

k

Tk

TFd

idTFX

λX

λTY

TFTi

TFh

FT 2i

FµY

FTh

FµX Fh

FTi Fh idFX

.

4.4. Succinct Automata from Bialgebras 127

Intuitively, the bialgebra (X, h, k) is a deterministic automaton with additional

algebraic structure in the monad T and say initial state x ∈ X, while the equivalent

free bialgebra is the determinisation of the succinct automaton Fd ◦ k ◦ i : Y → FTY

with side-effects in T and initial state d(x) ∈ TY .

The statement below establishes that, for bases, the morphism d is an algebra

homomorphism, and, intuitively, that elements of a basis are uniquely generated by

their image under the monad unit, that is, typically by themselves. We will use this

technical result, among others, in Proposition 4.4.0.8.

Lemma 4.4.0.6. Let (Y, i, d) be a basis for a T -algebra (X, h). Then µY ◦Td = d◦h
and d ◦ i = ηY .

Proof. The statement follows from the commutativity of the following two diagrams:

TX T 2Y

TX T 2X

TX TY

X TY

Td

idTX
T 2i

µY

h

Th

µX

h

T i

idTY

d

Y X X

TY TX

TY

i

ηY

idX

ηX

d
idTY

T i

h

.

Alternatively, the first equality can be deduced from Beck’s monadicity theorem:

since the forgetful functor U : C T → C is monadic, it reflects isomorphisms.

Lemma 4.4.0.7. A T -algebra admits a basis iff it is isomorphic to a free T -algebra.

Proof. Assume (X, h) admits a basis (Y, i, d). Then, by definition, d : X → TY

and h ◦ T i : TY → X are inverse to each other, thus witnessing an isomorphism

of X and TY in the base category C . It remains to show that the isomorphism

lifts to C T . It immediately follows that h ◦ T i lifts to a T -algebra homomorphism

h ◦ T i : (TY, µY) → (X, h). The morphism d lifts to a T -algebra homomorphism

d : (X, h) → (TY, µY) by Lemma 4.4.0.6.

128 Chapter 4. Canonical Automata

Conversely, assume f : (X, h) → (TY, µY) is an isomorphism in C T . Let i :=

f−1 ◦ ηY : Y → X and d := f : X → TY . Then (Y, i, d) is a basis for (X, h), since

d ◦ (h ◦ T i) = f ◦ h ◦ T (f−1 ◦ ηY) (Definitions of i, d)

= f ◦ h ◦ T (f−1) ◦ T (ηY) (Functoriality of T)

= f ◦ f−1 ◦ µY ◦ T (ηY) (f−1 is homomorphism)

= f ◦ f−1 (µY ◦ T (ηY) = idTY)

= idTY (f is isomorphism)

and similarly

(h ◦ T i) ◦ d = h ◦ T (f−1 ◦ ηY) ◦ f (Definitions of i, d)

= h ◦ T (f−1) ◦ T (ηY) ◦ f (Functoriality of T)

= f−1 ◦ µY ◦ T (ηY) ◦ f (f−1 is homomorphism)

= f−1 ◦ f (µY ◦ T (ηY) = idTY)

= idX (f is isomorphism)

The following result observes that if the generator for the algebra of a bialgebra in

Proposition 4.4.0.5 is in fact a basis, then the equivalence involved is an isomorphism.

Proposition 4.4.0.8. Let (X, h, k) be a λ-bialgebra and let (Y, i, d) be a basis for

the T -algebra (X, h). Then h ◦ T i : expT ((Y, Fd ◦ k ◦ i)) → (X, h, k) is a λ-bialgebra

isomorphism.

Proof. From Proposition 4.4.0.5 we know that h◦T i is a λ-bialgebra homomorphism.

By the definition of a basis, d is a two-sided inverse to h ◦ T i as ordinary morphism.

It thus remains to show that d is a λ-bialgebra homomorphism. By Lemma 4.4.0.6 it

is a T -algebra homomorphism, and the diagram below shows that it commutes with

4.4. Succinct Automata from Bialgebras 129

F -coalgebra structures:

X FX

X FTX

TY TX TFX TFTY FT 2Y FTY

k

d

idX

Fd

k

FTd

Fh

T i

h

Tk TFd

λX

λTY FµY

.

We conclude this section by illustrating how Proposition 4.4.0.5 can be used to

construct the canonical RFSA [49], the canonical nominal RFSA [111], and the mini-

mal xor automaton [156] for a regular language L over some alphabet A. All examples

follow three analogous steps:

1. We construct the minimal8 pointed coalgebra ML for the (nominal) set endo-

functor F = 2× (−)A accepting L. For the case A = {a, b} and L = (a+ b)∗a,

the coalgebra ML is depicted in Figure 4.3.

2. We equip the former with additional algebraic structure in a monad T (which

is related to F via a canonically induced distributive law λ) by generating

the λ-bialgebra freeT (ML). By identifying semantically equivalent states we

consequently derive the minimal9 (pointed) λ-bialgebra (X, h, k) for L.

3. We identify canonical generators (Y, i, d) for (X, h) and use Proposition 4.4.0.5

to derive an equivalent succinct automaton (Y, Fd ◦ k ◦ i) with side-effects in T .

Example 4.4.0.9 (The Canonical RFSA). Using the P-algebra structure hP : P2 →
2 with hP(ϕ) = ϕ(1), we derive a canonical distributive law λP between F and the

powerset monad P . The minimal pointed λP-bialgebra for L = (a + b)∗a with its

underlying CSL structure is depicted in Figure 4.6a. The partially ordered state

8Minimal in the sense that every state is reachable by an element of A∗ and no two different
states observe the same language.

9Minimal in the sense that every state is reachable by an element of T (A∗) and no two different
states observe the same language.

130 Chapter 4. Canonical Automata

[∅] [{x}] [{y}]

a, b
b

a

b

a

∨ [{x}] [{y}] [∅]
[{x}] [{x}] [{y}] [{x}]
[{y}] [{y}] [{y}] [{y}]
[∅] [{x}] [{y}] [∅]

(a)

[{x}] [{y}]

a, b

a

a, b

a

(b)

Figure 4.6: (a) The minimal CSL-structured DFA for L = (a+b)∗a; (b) The canonical
RFSA for L = (a+ b)∗a

space L = {[∅] ≤ [{x}] ≤ [{y}]} is necessarily finite, thus satisfies the descending

chain condition, which turns the set of join-irreducibles into a size-minimal generator

(J(L), i, d) with i(y) = y and d(x) = {y ∈ J(L) | y ≤ x}, cf. Lemma 4.4.0.3.

In this case, the join-irreducibles are given by all non-zero states. The P-succinct

automaton consequently induced by Proposition 4.4.0.5 is depicted in Figure 4.6b; it

can be recognised as the canonical RFSA, cf. e.g. [119].

The soundness of the construction in Figure 4.6a can be verified with the following

result, which translates the abstract definition of a free λP-bialgebra to concrete data.

Lemma 4.4.0.10. Let (PX,µP
X , 〈ε, δ〉) := freeλ

P
((X, 〈ε, δ〉)). Then it holds ε(ϕ) =

∨y∈ε−1(1)ϕ(y) and δa(ϕ)(x) = ∨y∈δ−1
a (x)ϕ(y).

Proof. The first equality is a consequence of

ε(ϕ) = π1 ◦ (hP × st) ◦ (Pπ1,Pπ2) ◦ P(〈ε, δ〉)(ϕ) (Definition of ε)

= hP ◦ P(ε)(ϕ) (Definition of π1)

= P(ε)(ϕ)(1) (Definition of hP)

= ∨y∈ε−1(1)ϕ(y) (Definition of P(ε))

For the second equality we observe

δa(ϕ)(x) = δ(ϕ)(a)(x) (Definition of δa)

= π2 ◦ (hP × st) ◦ 〈Pπ1,Pπ2〉 ◦ P(〈ε, δ〉)(ϕ)(a)(x) (Definition of δ)

= st ◦ P(δ)(ϕ)(a)(x) (Definition of π2)

4.4. Succinct Automata from Bialgebras 131

= P(eva)(P(δ)(ϕ))(x) (Definition of st)

= P(δa)(ϕ)(x) (Definition of δa)

= ∨y∈δ−1
a (x)ϕ(y) (Definition of P(δa))

To cover the canonical nominal RFSA we need the following result which shows

that the canonical strength5 function for the powerset monad P on the category

Set naturally lifts to the nominal powerset monad Pn (cf. Examples 2.2.0.8) on the

category A-Nom of finitely supported nominal A-sets and equivariant functions.

Lemma 4.4.0.11. The strength function st : Pn(X
A) → (PnX)A satisfying st(Φ)(a) =

Pn(eva)(Φ) is equivariant.

Proof. As before, let Perm(A) be the set of permutations of A, that is, bijective

functions π : A → A. We first observe that for any a ∈ A, x ∈ X and π ∈ Perm(A)
the mapping

{ϕ ∈ XA | ϕ(a) = x} → {ϕ ∈ XA | ϕ(π−1.a) = π−1.x} π 󰀁→ π−1.ϕ (4.2)

defines a bijection with inverse assignment ϕ 󰀁→ π.ϕ. Note that the set 2 is equipped

with the trivial action. The statement thus follows from

(π.st(Φ))(a)(x) = π.(st(Φ)(π−1.a))(x) (Definition of π.st(Φ))

= st(Φ)(π−1.a)(π−1.x) (Definition of π.(st(Φ)(π−1.a)))

= Pn(evπ−1.a)(Φ)(π
−1.x) (Definition of st)

= ∨ϕ∈ev−1

π−1.a
(π−1.x)Φ(ϕ) (Definition of Pn(evπ−1.a))

= ∨ϕ∈ev−1
a (x)Φ(π

−1.ϕ) (4.2)

= ∨ϕ∈ev−1
a (x)(π.Φ)(ϕ) (Definition of π.Φ)

= Pn(eva)(π.Φ)(x) (Definition of Pn(eva))

= st(π.Φ)(a)(x) (Definition of st)

132 Chapter 4. Canonical Automata

L a−1L A∗

A
a a

A

A

A

A

A

Figure 4.7: The orbit-finite representation of the canonical nominal RFSA for L =
{vawau | v, w, u ∈ A∗, a ∈ A}

Example 4.4.0.12 (The Canonical Nominal RFSA). Let A be a countably infinite

set. In Lemma 4.4.0.11 we have established that the canonical strength function in Set

lifts to A-Nom. It is also not hard to see that the functor F with FX = 2×XA extends

to a functor on A-Nom, and hPn : Pn2 → 2 with hPn(ϕ) = ϕ(1) defines a Pn-algebra,

which induces a canonical distributive law λPn between F and the nominal powerset

monad Pn (cf. Examples 2.2.0.8). As in [111], let L = {vawau | v, w, u ∈ A∗, a ∈ A},
then a−nL = a−2L = A∗ for n ≥ 2, and v−1L = ∪a∈Aa

−|v|aL, where |v|a denotes

the number of a’s that occur in v. In consequence, the nominal CSL underlying the

minimal pointed λPn-bialgebra is generated by the orbit-finite nominal set of join-

irreducibles {L}∪{a−1L | a ∈ A}∪{A∗}, which is equipped with the obvious Perm(A)-
action and satisfies the inclusion L ⊆ a−1L ⊆ A∗. The orbit-finite representation of

the Pn-succinct automaton induced by Proposition 4.4.0.5 is depicted in Figure 4.7.

Example 4.4.0.13 (The Minimal Xor Automaton). The R-algebra structure hR :

R2 → 2 with hR(ϕ) = ϕ(1) induces a canonical distributive law λR between F and

the free vector space monad R over the two element field. The minimal pointed λR-

bialgebra accepting L = (a + b)∗a is depicted in Figure 4.8a and coincides with the

bialgebra freely generated by the F -coalgebra in Figure 4.3. The underlying vector

space structure necessarily has a basis. We choose (Y, i, d) with Y = {{x}, {x, y}},
i(y) = y, and d(∅) = ∅, d({x}) = {{x}}, d({y}) = {{x}, {x, y}}, d({x, y}) = {{x, y}}.
The R-succinct automaton induced by Proposition 4.4.0.5 is depicted in Figure 4.8b;

it can be recognised as the minimal xor automaton, cf. e.g. [119].

4.5. Changing the Type of Succinct Automata 133

∅ {x, y}

{x} {y}

a, b

a, b

b

a

b

a

⊕ {x} {y} {x, y} ∅
{x} ∅ {x, y} {y} {x}
{y} {x, y} ∅ {x} {y}

{x, y} {y} {x} ∅ {x, y}
∅ {x} {y} {x, y} ∅

(a)

{x} {x, y}

a, b

a

(b)

Figure 4.8: (a) The minimal Z2-vector space structured DFA for L = (a+b)∗a (freely-
generated by the DFA in Figure 4.3); (b) Up to the choice of a basis, the minimal
xor automaton for L = (a+ b)∗a

As before, the soundness of the construction in Figure 4.8a can be verified with

the help of the following result, which translates the abstract definition of a free

λR-bialgebra to concrete data.

Lemma 4.4.0.14. Let (RX,µR
X , 〈ε, δ〉) := freeλ

R
((X, 〈ε, δ〉)). Then it holds ε(ϕ) =

󰁏
y∈ε−1(1) ϕ(y) and δa(ϕ)(x) =

󰁏
y∈δ−1

a (x) ϕ(y).

Proof. Analogous to the proof of Lemma 4.4.0.10.

4.5 Changing the Type of Succinct Automata

This section contains a generalisation of the approach in Section 4.4. The extension

is based on the observation that in the last section we implicitly considered two

types of monads: (i) a monad S that describes the additional algebraic structure of

a given deterministic automaton; and (ii) a monad T that captures the side-effects

of the succinct automaton that is obtained by the generator-based translation. In

Proposition 4.4.0.5, the main result of the last section, the monads coincided, but to

recover for instance the átomaton [39] we will have to extend Proposition 4.4.0.5 to

a situation where S and T can differ.

134 Chapter 4. Canonical Automata

4.5.1 Relating Distributive Laws

We now recall the main technical ingredient of our extension: distributive law ho-

momorphisms. As before, we present the theory on the level of arbitrary bialgebras,

even though we will later focus on the case where the coalgebraic dynamics are those

of deterministic automata. Distributive law homomorphisms will allow us to shift

a bialgebra over a monad S to an equivalent bialgebra over a monad T , for which

we can then find, analogous to Section 4.4, an equivalent succinct representation.

The notion we use is an instance of a much more general definition that allows to

relate distributive laws on two different categories. We restrict to the case where both

distributive laws are given over the same behavioural endofunctor F .

Definition 4.5.1.1 (Distributive Law Homomorphism [157, 128]). Let λS : SF →
FS and λT : TF → FT be distributive laws between monads S and T and an endo-

functor F , respectively. A distributive law homomorphism α : λS → λT consists of a

natural transformation α : T ⇒ S such that the following three diagrams commute:

T 2 T

TS SS S

µT

Tα α

αS µS

1 S

T

ηT

ηS

α

TF FT

SF FS

αF

λT

Fα

λS

.

The above definition is such that α induces a functor between the categories of

λS- and λT -bialgebras. The statement is well-known [87, 35]. Since we were unable

to locate a full proof in the literature, we include one by ourselves below.

Lemma 4.5.1.2 ([87, 35]). Let α : λS → λT be a distributive law homomorphism.

Then α(X, h, k) := (X, h ◦ αX , k) and α(f) := f defines a functor α : Bialg(λS) →
Bialg(λT).

Proof. We first show that the construction is well-defined on objects. The commuta-

4.5. Changing the Type of Succinct Automata 135

tivity of the two diagrams below shows that (X, h ◦ αX) is a T -algebra:

T 2X TX

TSX S2X SX

TX SX X

µT
X

TαX αX

Th

αSX µS
X

Sh h

αX h

X X

SX

TX

1

ηSX

ηTX

h

αX

.

To establish that (X, h ◦ αX , k) is a λT -bialgebra it thus remains to observe the

commutativity of the diagram on the left below:

TX TFX

FTX

SX SFX FSX

X FX

Tk

αX

λT
X

αFX

FαX

h

Sk λS
X

Fh

k

TX TY

SX SY

X Y

αX

Tf

αY

hX

Sf

hY

f

.

Well-definedness on morphisms follows from the naturality of α, as seen on the right

above. Compositionality follows immediately from the definition of α on morphisms.

The next result is a straightforward consequence of Proposition 4.4.0.5, and may

be strengthened to an isomorphism in case one is given a basis instead of a generator,

analogous to Proposition 4.4.0.8. It can be seen as a road map to the approach we

propose in this section.

Corollary 4.5.1.3. Let α : λS → λT be a homomorphism between distributive laws

and (X, h, k) a λS-bialgebra. If (Y, i, d) is a generator for the T -algebra (X, h ◦ αX),

then (h ◦αX) ◦ T i : expT ((Y, Fd ◦ k ◦ i)) → (X, h ◦αX , k) is a λT -bialgebra homomor-

phism.

Proof. By Lemma 4.5.1.2 the tuple (X, h ◦ αX , k) constitutes a λT -bialgebra. The

136 Chapter 4. Canonical Automata

statement thus follows from Proposition 4.4.0.5.

4.5.2 Deriving Distributive Law Relations

We now turn to the procedure of deriving a distributive law homomorphism. In

practice, coming up with a natural transformation and proving that it lifts to a

distributive law homomorphism can be quite cumbersome.

Fortunately, for certain cases, there is a way to simplify things significantly. For

instance, as the next result shows, if, as in (4.1), the involved distributive laws are

induced by algebra structures hS and hT for an output set B, respectively, then one

of the conditions is implied by a less convoluted constraint.

Lemma 4.5.2.1. Let α : T ⇒ S be a natural transformation satisfying hS ◦αB = hT ,

then λS ◦ αF = Fα ◦ λT .

Proof. We need to establish the commutativity of the following diagram:

T (XA × B) S(XA × B)

T (XA)× TB S(XA)× SB

(TX)A × B (SX)A × B

α
XA×B

(Tπ1,Tπ2) (Sπ1,Sπ2)

α
XA×αB

st×hT st×hS

(αX)A×B

.

The commutativity of the top square is a consequence of the naturality of α. Simi-

larly, the commutativity of the bottom square follows from the assumption and the

naturality of α,

st ◦ αXA(U)(a) = S(eva) ◦ αXA(U) (Definition of st)

= αX ◦ T (eva)(U) (Naturality of α)

= αA
X ◦ st(U)(a) (Definition of st)

4.5. Changing the Type of Succinct Automata 137

The next result shows that for the neighbourhood monad there exists a family

of canonical choices of distributive law homomorphisms parametrised by Eilenberg-

Moore algebra structures on the output set B = 2. While it is well-known that

such algebras induce a monad morphism, for instance in the coalgebraic modal logic

community [85, 136, 62], its commutativity with canonical distributive laws has not

been observed before. Moreover, we provide a new formalisation in terms of the

strength function, which allows the result to be lifted to strong monads and arbitrary

output objects on other categories than the one of sets and functions.

Proposition 4.5.2.2. Any algebra h : T2 → 2 over a set monad T induces a homo-

morphism αh : λH → λh between distributive laws by αh
X := h2X ◦ st ◦ T (ηHX).

Proof. It is well-known that the strength operation is natural and satisfies the two

equalities

(ηTA)
B = st ◦ ηTAB st ◦ µAB = µB

A ◦ st ◦ T st.

It is also not hard to see that for functions f : A → B and g : C → D it holds

fD ◦ Ag = Bg ◦ fC . We write f ∗ for Af and f∗ for fA, and omit components of

natural transformations for readability. The naturality of αhT
is a consequence of:

TX T (22
X
) T (2)2

X
22

X

TY T (22
Y
) T (2)2

Y
22

Y

Tf

TηH

T ((f∗)∗)

st h∗

(f∗)∗ (f∗)∗

TηH st h∗

.

Next, note that 2η
H
2X ◦ ηH

22
X = id22X , as for all Φ ∈ 22

X
,ϕ ∈ 2X we have:

(2η
H
2X ◦ ηH

22
X)(Φ)(ϕ) = (ηH

22
X (Φ) ◦ ηH2X)(ϕ) (Definition of 2f)

= ηH2X (ϕ)(Φ) (Definition of ηH
22X

)

= Φ(ϕ) (Definition of ηH2X)

= id22X (Φ)(ϕ) (Definition of id22X).

Using the above equality, the equation involving the monad multiplications is seen

from the diagram on the left below. The equation involving the monad units is

138 Chapter 4. Canonical Automata

established by the diagram on the right below:

T (22
X
) T (22

22
X

) T (2)2
22

X

22
22

X

T (22
X
)

T (T (2)2
X
) T 2(2)2

X
T (2)2

X

T 2(22
X
)

T 2(X)

T (X) T (22
X
) T (2)2

X
22

X

T (ηH)

1

st

T ((ηH)∗)

h∗

(ηH)∗

(ηH)∗

st

T (h∗)

st

µT
∗

T (h)∗

h∗

µT

T (st)

T 2(ηH)

µT

T (ηH) st h∗

X TX

22
X

T (22
X
)

T (2)2
X

22
X

ηT

ηH

ηH

TηH

ηT∗

ηT

1

st

h∗

.

To show that the equation involving the distributive laws holds, we use Lemma 4.5.2.1.

That is, we note that for any f it holds f ◦ eva = eva ◦ f∗ and hH = evid2 , before

establishing the following commutative diagram:

T (2) T (22
2
) T (2)2

2
22

2

T (2)

2

h

T (ηH)

1
T (evid2)

st h∗

evid2

hH

h

.

The rest of the section is concerned with using Proposition 4.5.2.2 and Corol-

lary 4.5.1.3 to derive canonical acceptors through distributive law homomorphisms.

4.5. Changing the Type of Succinct Automata 139

4.5.3 Example: The Átomaton

We will now justify the previous informal construction of the átomaton. As hinted

before, the átomaton can be recovered by relating the neighbourhood monad H—

whose algebras are complete atomic Boolean algebras (CABAs)—and the powerset

monad P . Formally, as a consequence of Proposition 4.5.2.2 we obtain the following.

Corollary 4.5.3.1. Let αX : PX → HX satisfy αX(ϕ)(ψ) = ∨x∈Xϕ(x)∧ψ(x), then

α constitutes a distributive law homomorphism α : λH → λP .

Proof. We show that αhP
= α, the statement then follows from Proposition 4.5.2.2:

αhP

X (ϕ)(ψ) = (hP)2
X ◦ st ◦ P(ηHX)(ϕ)(ψ) (Definition of αhP

X)

= st ◦ P(ηHX)(ϕ)(ψ)(1) (Definition of hP)

= P(evψ)(P(ηHX)(ϕ))(1) (Definition of st)

= P(evψ ◦ ηHX)(ϕ)(1) (P(f) ◦ P(g) = P(f ◦ g))

= P(ψ)(ϕ)(1) (Definition of ev, ηHX)

= ∨x∈ψ−1(1)ϕ(x) (Definition of P(ψ))

= ∨x∈Xϕ(x) ∧ ψ(x) (x ∈ ψ−1(1))

= αX(ϕ)(ψ) (Definition of αX)

The next statement follows from a well-known Stone-type duality representation

theorem for CABAs [149].

Lemma 4.5.3.2. Let αX : PX → HX satisfy αX(ϕ)(ψ) = ∨x∈Xϕ(x) ∧ ψ(x). If

B = (X, h) is an H-algebra, then (At(B), i, d) with i(a) = a and d(x) = {a ∈ At(B) |
a ≤ x} is a basis for the P-algebra (X, h ◦ αX).

Proof. Let K : Setop → SetH denote the comparison functor with K(X) = (PX, 2η
H
X)

induced by the self-dual contravariant powerset adjunction. It is well-known that K

has a quasi-inverse, namely the functor At : SetH → Setop assigning to a complete

atomic Boolean algebra B its atoms At(B) [149]. The equivalence d : B ≃ K ◦At(B)

140 Chapter 4. Canonical Automata

is given by d(x) = {a ∈ At(B) | a ≤ x}. The calculation below

2η
H
X ◦ αPX(Φ)(x) = αPX(Φ)(η

H
X(x)) (Definition of 2η

H
X)

= ∨ϕ∈2XΦ(ϕ) ∧ ηHX(x)(ϕ) (Definition of αPX)

= ∨ϕ∈2XΦ(ϕ) ∧ ϕ(x) (Definition of ηHX)

= µP
X(Φ)(x) (Definition of µP

X)

shows that 2η
H
X ◦αPX = µP

X . By Corollary 4.5.3.1 the definition α((X, h)) = (X, h◦αX)

yields a functor α : SetH → SetP . We can thus deduce the following equivalence

between P-algebras:

(X, h ◦ αX) = α(B) (Definition of α)

≃ α ◦K ◦ At(B) (id ≃ K ◦ At)

= (P(At(B)), 2η
H
At(B) ◦ αP(At(B))) (Definition of α ◦K ◦ At)

= (P(At(B)), µP
At(B)) (2η

H
X ◦ αPX = µP

X)

Using the definition of a basis, the former immediately implies the claim.

The átomaton for the regular language L = (a + b)∗a, for example, can now be

obtained as follows. First, we construct the minimal pointed λH-bialgebra accepting

L, which is depicted in Figure 4.4 together with its underlying CABA structure B.

The construction can be verified with the help of the following result.

Lemma 4.5.3.3. Let (HX,µH
X , 〈ε, δ〉) := freeλ

H
((X, 〈ε, δ〉)). Then it holds ε(Φ) =

Φ(ε) and δa(Φ)(ϕ) = Φ(ϕ ◦ δa).

Proof. The proof is analogous to the one of Lemma 4.4.0.10. The first equality is

seen as follows:

ε(Φ) = H(ε)(Φ)(id2) (Cf. proof of Lemma 4.4.0.10)

= Φ(id2 ◦ ε) (Definition of H(ε))

= Φ(ε) (id2 ◦ ε = ε)

4.5. Changing the Type of Succinct Automata 141

[{{x}, {x, y}}] [∅]

[{{x}, {y}, {x, y}}] [{{x}, {y}, {x, y}, ∅}]

a, bb

a

a

b

a, b

∨ 1 2 3 4
1 1 1 3 4
2 1 2 3 4
3 3 3 3 4
4 4 4 4 4

∧ 1 2 3 4
1 1 2 1 1
2 2 2 2 2
3 1 2 3 3
4 1 2 3 4

(a)

[{{x}, {x, y}}]

[{{x}, {y}, {x, y}}] [{{x}, {y}, {x, y}, ∅}]

a, b

a

a

a, b

a, b

a, b

a, b

(b)

Figure 4.9: (a) The minimal CDL-structured DFA for L = (a + b)∗a, where 1 ≡
[{{x}, {x, y}}], 2 ≡ [∅], 3 ≡ [{{x}, {y}, {x, y}}], 4 ≡ [{{x}, {y}, {x, y}, ∅}]; (b) The
distromaton for L = (a+ b)∗a

For the second equality we observe:

δa(Φ)(ϕ) = H(δa)(Φ)(ϕ) (Cf. proof of Lemma 4.4.0.10)

= Φ(ϕ ◦ δa) (Definition of H(δa))

Using the distributive law homomorphism α of Corollary 4.5.3.1, the minimal

pointed λH-bialgebra can then be translated into an equivalent pointed λP-bialgebra

with underlying CSL-structure α(B). By Lemma 4.5.3.2 the atoms At(B) of B form

a basis for α(B). In this case the atoms are given by [{{x}, {x, y}}], [{{y}}] and [{∅}].
The P-succinct automaton consequently induced by Corollary 4.5.1.3 is depicted in

Figure 4.5; it can be recognised as the átomaton, cf. e.g. [119].

4.5.4 Example: The Distromaton

We shall now use our framework to recover another canonical non-deterministic ac-

ceptor: the distromaton [119]. As the name suggests, it can be constructed by relating

the monotone neighbourhood monad A – whose algebras are completely distributive

142 Chapter 4. Canonical Automata

lattices – and the powerset monad P . Formally, the relationship can be established

by the same natural transformation we used for the átomaton.

Corollary 4.5.4.1. Let αX : PX → AX satisfy αX(ϕ)(ψ) = ∨x∈Xϕ(x)∧ ψ(x), then

α constitutes a distributive law homomorphism α : λA → λP .

Proof. We observe that αX(ϕ) : (2
X ,⊆) → (2,≤) is monotone for all ϕ ∈ 2X . Since

the monotone neighbourhood monad A and the neighbourhood monad H only differ

on objects, the result follows from Corollary 4.5.3.1.

The distromaton for the regular language L = (a + b)∗a, for example, can now

be obtained as follows. First, we construct the minimal pointed λA-bialgebra for L,

depicted in Figure 4.9a with its underlying CDL structure h. The construction can

be verified with the help of the result below.

Lemma 4.5.4.2. Let (AX,µA
X , 〈ε, δ〉) := freeλ

A
((X, 〈ε, δ〉)). Then it holds ε(Φ) =

Φ(ε) and δa(Φ)(ϕ) = Φ(ϕ ◦ δa).

Proof. Analogous to the proof of Lemma 4.5.3.3.

Using the distributive law homomorphism α in Corollary 4.5.4.1, the minimal

pointed λA-bialgebra can be translated into an equivalent pointed λP-bialgebra with

underlying CSL structure L = h ◦ αX . Its partially ordered state space

[∅] ≤ [{{x}, {x, y}}] ≤ [{{x}, {y}, {x, y}}] ≤ [{{x}, {y}, {x, y}, ∅}]

is necessarily finite, which turns the set of join-irreducibles into a size-minimal gen-

erator (J(L), i, d) for L, where i(y) = y and d(x) = {y ∈ J(L) | y ≤ x}. In this

case, the join-irreducibles are given by all non-zero states. The P-succinct automa-

ton consequently induced by Corollary 4.5.1.3 is depicted in Figure 4.9b and can be

recognised as the distromaton, cf. [119].

4.5.5 Example: The Minimal Xor-CABA Automaton

We conclude this section by relating the neighbourhood monad H with the free vector

space monad R over the unique two element field Z2. In particular, we derive a new

4.5. Changing the Type of Succinct Automata 143

HP RA átomaton minimal xor-CABA

canonical RFSA minimal xor

distromaton

Figure 4.10: The minimal xor-CABA automaton is to the minimal xor automaton
what the átomaton is to the canonical RFSA

canonical succinct acceptor for regular languages, which we call the minimal xor-

CABA automaton.

The next result shows that every CABA can be equipped with a symmetric dif-

ference operation that turns it into a vector space over the two element field.

Corollary 4.5.5.1. Let αX : RX → HX satisfy αX(ϕ)(ψ) =
󰁏

x∈X ϕ(x) ·ψ(x), then
α constitutes a distributive law homomorphism α : λH → λR.

Proof. Analogous to the proof of Corollary 4.5.3.1.

Since every vector space admits a basis, the above result leads to the definition of

a new acceptor of regular languages. In what follows, let α denote the homomorphism

in Corollary 4.5.5.1 and F the endofunctor given by FX = 2×XA.

Definition 4.5.5.2 (Minimal Xor-CABA Automaton). Let (X, h, k) be the minimal

x-pointed λH-bialgebra accepting a regular language L ⊆ A∗, and B = (Y, i, d) a

basis for the R-algebra (X, h ◦ αX). The minimal xor-CABA automaton for L with

respect to B is the d(x)-pointed Z2-weighted automaton Fd ◦ k ◦ i.

In Figure 4.10 it is indicated how the canonical acceptors in this chapter, including

the minimal xor-CABA automaton, are based on relations between pairs of monads.

For the regular language L = (a+b)∗a the above definition instantiates as follows.

First, as for the átomaton, we construct the minimal pointed λH-bialgebra (X, h, k)

for L; it is depicted in Figure 4.4. As one easily verifies, the Z2-vector space (X, h◦αX)

is induced by the symmetric difference operation ⊕ on subsets. Using the notation

in Figure 4.4, we choose the basis (Y, i, d) with Y = {4, 6, 7, 8}; i(y) = y; and d(1) =

7 ⊕ 8, d(2) = ∅, d(3) = 6 ⊕ 7, d(4) = 4, d(5) = 6 ⊕ 7 ⊕ 8, d(6) = 6, d(7) = 7,

144 Chapter 4. Canonical Automata

[{{y}, ∅}] [{{y}}] [{{x}, {y}, {x, y}, ∅}] [{{x, y}, ∅}]

a, b

a

a, b

a, b

Figure 4.11: The minimal xor-CABA automaton for L = (a+ b)∗a

d(8) = 8. The induced d(1) = 7 ⊕ 8-pointed R-succinct automaton accepting L, i.e.

the minimal xor-CABA automaton, is depicted in Figure 4.11.

4.6 Minimality

In this section we restrict ourselves to the category of (nominal) sets. We show

that every language satisfying a suitable property parametric in monads S and T

admits a size-minimal succinct automaton of type T accepting it. As a main result

we obtain Theorem 4.6.0.5. In Section 4.6.1 we instantiate the former to subsume

known minimality results for canonical automata, to prove the xor-CABA automaton

minimal, and to establish a size-comparison between different acceptors.

Given a distributive law homomorphism α : λS → λT , let ext : Coalg(FT) →
Coalg(FS) be the functor given by ext((X, k)) = (X,FαX ◦ k) and ext(f) = f .

Moreover, let expU : Coalg(FU) → Bialg(λU) for U ∈ {S, T} denote the functor

introduced in Lemma 4.3.0.10.

Proposition 4.6.0.1. Let α : λS → λT be a distributive law homomorphism. Then

αX : TX → SX underlies a natural transformation α : expT ⇒ α ◦ expS ◦ ext between
functors of type Coalg(FT) → Bialg(λT).

Proof. Given a T -succinct automaton X = (X, k) the definitions imply:

expT (X) = (TX, µT
X , FµT

X ◦ λT
TX ◦ Tk)

α ◦ expS ◦ ext(X) = (SX, µS
X ◦ αSX , FµS

X ◦ λS
SX ◦ SFαX ◦ Sk).

By the definition of distributive law homomorphisms, the morphism αX commutes

with the underlying T -algebra structures. Its commutativity with the underlying

4.6. Minimality 145

F -coalgebra structures follows from:

TX TFTX FT 2X FTX

TFSX FTSX

SX SFTX SFSX FS2X FSX

αX

Tk

αFTX

λT
TX

TFαX

FµT
X

FTαX

FαX

λT
SX

αFSX FαSX

Sk SFαX λS
SX FµS

X

.

Above we use the naturality of α and λT , and the definition of a distributivity law

homomorphism. The naturality of α as natural transformation α : expT ⇒ α ◦ expS ◦
ext follows from the naturality of α as natural transformation α : T ⇒ S.

In the above situation a T -succinct automaton admits two semantics, by lifting

the former either to a bialgebra over λS or λT . The next definition introduces a notion

of closedness that captures the cases in which the image of both semantics coincides.

Definition 4.6.0.2 (α-Closed Succinct Automaton). Let α : λS → λT be a distribu-

tive law homomorphism. We say that a T -succinct automaton X is α-closed if the

unique diagonal below is an isomorphism:

expT (X) im(obsexpT (X))

im(obsα(expS(ext(X)))) Ω

obs

obs◦αX .

It immediately follows that the unique diagonal in Definition 4.6.0.2 is injective.

The result below shows that instead of defining the α-closedness of X as true if

the unique diagonal is an isomorphism, we could have equivalently defined it to be

true if their exists any isomorphism of such type.

Lemma 4.6.0.3. X is α-closed iff im(obsexpT (X)) ∼= im(obsα(expS(ext(X)))).

Proof. Clearly, if X is α-closed, then, by definition, the unique diagonal in Defini-

tion 4.6.0.2 witnesses the desired isomorphism.

Conversely, assume there is any isomorphism im(obsexpT (X))
ϕ∼= im(obsα(expS(ext(X)))).

As the unique diagonal d in Definition 4.6.0.2 is necessarily injective, it remains to

146 Chapter 4. Canonical Automata

show that it is also surjective, that is im(d) ∼= im(obsα(expS(ext(X)))). The latter follows

immediately from the uniqueness of epi-mono factorisations:

im(obsexpT (X)) im(d)

im(obsα(expS(ext(X)))) im(obsexpT (X)) im(obsα(expS(ext(X))))

ϕ

d

∼=

ϕ−1 d

.

Succinct automata obtained from generators for bialgebras are α-closed.

Lemma 4.6.0.4. Let α : λS → λT be a distributive law homomorphism and (X, h, k)

a λS-bialgebra. If (Y, i, d) is a generator for (X, h◦αX), then (Y, Fd◦k◦i) is α-closed.

Proof. We write X := (X, h, k), G := (Y, i, d), and gen(α(X),G) := (Y, Fd ◦ k ◦ i).

The definitions imply

expT (gen(α(X),G)) = (TY, µT
Y , (Fd ◦ k ◦ i)󰂒)

α ◦ expS ◦ ext(gen(α(X),G)) = (SY, µS
Y ◦ αSY , (F (αY ◦ d) ◦ k ◦ i)󰂒).

Since G is a generator for (X, h ◦αX), Proposition 4.4.0.5 implies that (h ◦αX) ◦ T i :
expT (gen(α(X),G)) → α(X) is a λT -bialgebra homomorphism. By the definition of a

generator, (h ◦ αX) ◦ T i has a right-inverse, which implies its surjectivity. Naturality

of α shows that G = (Y, i,αY ◦ d) is a generator for (X, h). Thus Proposition 4.4.0.5

implies that h ◦ Si : expS(gen(X,G)) → X is a λS-bialgebra homomorphism. By the

definition of a generator, h ◦ Si has a right-inverse, which implies its surjectivity.

Applying α shows that h ◦ Si : α ◦ expS ◦ ext(gen(α(X),G)) → α(X) is a surjective

λT -bialgebra homomorphism. The statement follows from the uniqueness of epi-mono

4.6. Minimality 147

factorisations:

expT (gen(α(X),G)) im(obsexpT (gen(α(X),G)))

α ◦ expS ◦ ext(gen(α(X),G)) α(X) im(obsα(X))

im(obsα◦expS◦ext(gen(α(X),G))) Ω

obs

αY
(h◦αX)◦T i

≃

obs

h◦Si
obs

≃

.

We are now able to state our main result.

In [119, Theorem 4.8] it is shown that i) the canonical RFSA for L accepts the least

number of languages among all NFAs accepting L; and ii) among NFAs with the same

number of accepted languages, the canonical RFSA is state-minimal. Note how the

two bullet points of Theorem 4.6.0.5 below resemble the ones in [119, Theorem 4.8]: if

S = T = P and α is trivial, the theorem implies that i) the set of languages accepted

by the canonical RFSA for L is included in any other set of languages accepted by

NFAs for L; and ii) among NFAs for L that accept the same set of languages (i.e.

Der(L)
CSL

), the canonical RFSA is size-minimal (cf. Corollary 4.6.1.3).

Theorem 4.6.0.5 (Minimal Succinct Automata). Given a language L ∈ Ω such that

there exists a minimal pointed λS-bialgebra M accepting L and the underlying algebra

of α(M) admits a size-minimal generator, there exists a pointed α-closed T -succinct

automaton X accepting L such that:

• for any pointed α-closed T -succinct automaton Y accepting L we have that

im(obsexpT (X)) ⊆ im(obsexpT (Y));

• if im(obsexpT (X)) = im(obsexpT (Y)), then |X| ≤ |Y |, where X and Y are the

carriers of X and Y, respectively.

Proof. We use a similar notation as in the proof of Lemma 4.6.0.4. Let G = (X, i, d)

be the size-minimal generator for the underlying algebra of α(M), which we assume

to be x-pointed. We define a d(x)-pointed T -succinct automaton X := gen(α(M),G).

148 Chapter 4. Canonical Automata

By Corollary 4.5.1.3 there exists a λT -bialgebra homomorphism i󰂒 : expT (X) → α(M).

By the definition of a generator, i󰂒 has a right-inverse, which implies its surjectivity.

From the uniqueness of morphisms into a final coalgebra we can deduce that X
accepts the language accepted by α(M). Because α only modifies the algebraic part

of a bialgebra and the final bialgebra homomorphism is induced by the underlying

final coalgebra homomorphism, the language accepted by α(M) is the language L

accepted by M. From Lemma 4.6.0.4 it follows that X is α-closed.

Consider any pointed α-closed T -succinct automaton Y accepting L. By minimal-

ity of M there is an injective λS-bialgebra homomorphism j : M ↩→ im(obsexpS(ext(Y))),

which is also an injective λT -bialgebra homomorphism j : α(M) ↩→ im(obsα(expS(ext(Y)))),

because the functor α is the identity on morphisms, and only modifies the algebraic

part of a bialgebra. Since Y is α-closed, we have an isomorphism im(obsα(expS(ext(Y)))) ∼=
im(obsexpT (Y)). By composing the previous functions, we thus obtain an injective

λT -bialgebra homomorphism k : α(M) ↩→ im(obsexpT (Y)). Since any final bialgebra

homomorphism is induced by the underlying final F -coalgebra homomorphism, we

have obsα(M) = obsM. By assumption M is minimal, that is, obsM is injective. By the

uniqueness of morphisms into a final object the outer square of the diagram below

commutes:

expT (X) α(M)

im(obsexpT (X)) Ω

i󰂒

obsexpT (X) ∼=
obsα(M)=obsM

By the uniqueness of epi-mono factorisations, there thus exists a diagonal isomorphism

α(M) ∼= im(obsexpT (X)). By composing the diagonal isomorphism with k, we obtain

a λT -bialgebra homomorphism im(obsexpT (X)) → im(obsexpT (Y)). The latter commutes

with observability maps and thus is an inclusion, so im(obsexpT (X)) ⊆ im(obsexpT (Y)).

Suppose im(obsexpT (X)) = im(obsexpT (Y)), which implies that j is an isomorphism.

Then there exists a surjective λT -bialgebra homomorphism expT (Y) → α(M), which

means that Y forms the carrier of a generator for the underlying algebra of α(M).

By the size-minimality of G we thus obtain |X| ≤ |Y |.

For a T -succinct automaton X let us write obs†X := obsexpT (X) ◦ ηTX : X → Ω

for a generalisation of the semantics of non-deterministic automata. Lemma 4.6.0.8

4.6. Minimality 149

provides an equivalent characterisation of α-closedness in terms of obs† that will be

particularly useful in Section 4.6.1. To prove Lemma 4.6.0.8, we need the following

technical results.

Lemma 4.6.0.6. Let α : λS → λT be a distributive law homomorphism. If (Ω, h, k)

is the final λS-bialgebra, then (Ω, h ◦ αΩ, k) is the final λT -bialgebra.

Proof. It is well-known that if (Ω, h, k) is the final λS-bialgebra, then (Ω, k) is the

final F -coalgebra and h : SΩ → Ω is the unique homomorphism satisfying k ◦ h =

Fh◦λS
Ω ◦Sk. Similarly, it is well-known that (Ω, h, k) is the final λT -bialgebra, where

h : TΩ → Ω is the unique homomorphism satisfying k ◦ h = Fh ◦ λT
Ω ◦ Tk. The

statement thus follows from uniqueness:

TΩ SΩ Ω

TFΩ SFΩ

FTΩ FSΩ FΩ

Tk

αΩ

Sk

h

k
αFΩ

λT
Ω λS

Ω

FαΩ Fh

.

Lemma 4.6.0.7. Let X be a T -succinct automaton, then obs†X = obs†ext(X).

Proof. Since by Proposition 4.6.0.1 the morphism αX : expT (X) → α(expS(ext(X)))

is a λT -bialgebra homomorphism, we have by uniqueness obsα(expS(ext(X))) ◦ αX =

obsexpT (X). Since any final bialgebra homomorphism is induced by the underlying

final F -coalgebra homomorphism it holds obsα(expS(ext(X))) = obsexp(extS(X)), which thus

implies

obsexpS(ext(X)) ◦ αX = obsexpT (X). (4.3)

The statement follows from

obs†X = obsexpT (X) ◦ ηTX (Definition of obs†X)

= obsexpS(ext(X)) ◦ αX ◦ ηTX (4.3)

= obsexpS(ext(X)) ◦ ηSX (α is distributive law hom.)

150 Chapter 4. Canonical Automata

= obs†ext(X) (Definition of obs†ext(X))

Lemma 4.6.0.8. Let α : λS → λT be a distributive law homomorphism. For any

T -succinct automaton X it holds that im(obsexpT (X)) = im(h ◦ αΩ ◦ T (obs†X)) and

im(obsα(expS(ext(X)))) = im(h ◦ S(obs†X)), where (Ω, h, k) is the final λS-bialgebra.

Proof. By Lemma 4.6.0.6 (Ω, h ◦ αΩ, k) is the final λT -bialgebra. The first statement

follows from

obsexpT (X) = obsexpT (X) ◦ µT
X ◦ T (ηTX) (Definition of T)

= h ◦ αΩ ◦ T (obsexpT (X)) ◦ T (ηTX) (obsexpT (X) is T -algebra hom)

= h ◦ αΩ ◦ T (obs†X) (Definition of obs†X)

Similarly one shows that obsexpS(ext(X)) = h ◦ S(obs†ext(X)). Since any final bialgebra

homomorphism is induced by the underlying final F -coalgebra homomorphism, it

thus follows

im(obsα(expS(ext(X)))) = im(obsexpS(ext(X))) (obsα(expS(ext(X))) = obsexpS(ext(X)))

= im(h ◦ S(obs†ext(X))) (obsexpS(ext(X)) = h ◦ S(obs†ext(X)))

= im(h ◦ S(obs†X)) (Lemma 4.6.0.7)

In light of Lemma 4.6.0.3, the above Lemma 4.6.0.8 implies that a T -succinct

automaton X is α-closed iff there exists an isomorphism im(h ◦ αΩ ◦ T (obs†X))
∼=

im(h ◦ S(obs†X)).

4.6.1 Applications to Canonical Automata

In this section we instantiate Theorem 4.6.0.5 to characterise a variety of canonical

acceptors from the literature as size-minimal representatives among subclasses of α-

closed succinct automata, i.e. those automata whose images of the two semantics

4.6. Minimality 151

induced by α coincide. We begin with the canonical RFSA and the minimal xor

automaton, for which α is the identitity and α-closedness therefore is trivial.

In [49] the canonical RFSA for L has been characterised as size-minimal among

those NFAs accepting L for which states accept a residual of L. More recently, it was

shown that the class in fact can be extended to those NFAs accepting L for which

states accept a union of residuals of L [119]. In Corollary 4.6.1.3 we recover the latter

as a consequence of the second point in Theorem 4.6.0.5. To prove Corollary 4.6.1.3,

we need the following technical result.

Lemma 4.6.1.1. Let X = (X, h, k) be an observable λS-bialgebra and G a generator

for (X, h ◦ αX), then im(obsexpT (gen(α(X),G))) ≃ X.

Proof. By Proposition 4.4.0.5 there exists a surjective λT -bialgebra homomorphism

expT (gen(α(X),G)) → α(X). Since the final λT -bialgebra homomorphism is induced

by the underlying final F -coalgebra homomorphism and α(X) = (X, h◦αX , k), it holds

obsα(X) = obsX. The statement follows from the uniqueness of epi-mono factorisations

and the definition of α(X):

expT (gen(α(X),G)) α(X)

im(obsexpT (gen(α(X),G))) Ω

≃ obsα(X)=obsX .

We write Y
A
for the algebraic closure of a subset Y ⊆ A of some T -algebra A (for

details see Section 5.2). For example, if Y = im(f) for some f with codomain A =

(A, h), the closure is given by the induced T -algebra structure on im(h ◦ Tf). Recall
that the set 2 = {0, 1} – and consequently the set 2A

∗
underlying the final coalgebra

for the functor FX = 2 × XA – can be turned into a P-algebra (Lemma 4.3.0.3),

an H-algebra (Lemma 4.3.0.4), an A-algebra (Lemma 4.3.0.5), and an R-algebra

(Lemma 4.3.0.6). We thus can take the closure of a subset Y ⊆ 2A
∗
with respect to

a T -algebra structure (2A
∗
, hT), for any T ∈ {P ,H,A,R}. In such a situation, we

keep hT implicit and abbreviate Y
C T

:= Y
(2A

∗
,hT)

. For example, Der(L)
CSL

denotes

the P-closure of the subset Der(L) ⊆ 2A
∗
. For more cases recall Example 2.2.0.11.

152 Chapter 4. Canonical Automata

Corollary 4.6.1.2. Let α : PX → HX satisfy αX(ϕ)(ψ) = ∨x∈Xϕ(x) ∧ ψ(x). For

any unpointed non-deterministic automaton X it holds:

• im(obsexpP (X)) = im(obs†X)
CSL

;

• im(obsα(expH(ext(X)))) = im(obs†X)
CABA

.

Proof. The final λH-bialgebra is given by (2A
∗
, 2η

H
A∗ , (ε, δ)). In the proof of Lemma 4.5.3.2

it was shown that 2η
H
X ◦ αPX = µP

X . Thus it follows

im(obsexpP (X)) = im(2η
H
A∗ ◦ α2A

∗ ◦ P(obs†X)) (Lemma 4.6.0.8)

= im(µP
A∗ ◦ P(obs†X)) (2η

H
X ◦ αPX = µP

X)

= {∪u∈Uobs
†
X (u) | U ⊆ X} (Definitions of P(−), µP)

= {obs†X (x) | x ∈ X}
CSL

(Definition of (−)
CSL

)

Similarly one computes

im(obsα(expH(ext(X))))

= (Lemma 4.6.0.8)

im(2η
H
A∗ ◦H(obs†X))

= (Definitions of 2η
H
A∗ ,H(−))

{∪ϕ∈Φ ∩x∈ϕ obs†X (x) ∩ ∩x ∕∈ϕobs
†
X (x)

c | Φ ⊆ 2X}

= (Set equality)

{{w ∈ A∗ | {x ∈ X | obs†X (x)(w) = 1} ∈ Φ} | Φ ⊆ 2X}

= (Definition of (−)
CABA

)

{obs†X (x) | x ∈ X}
CABA

Corollary 4.6.1.3. The canonical RFSA for L is size-minimal among NFAs Y ac-

cepting L with im(obs†Y)
CSL

⊆ Der(L)
CSL

.

4.6. Minimality 153

Proof. By Lemma 4.3.0.3 the morphism hP : P2 → 2 with hP(ϕ) = ϕ(1) is a P-

algebra. As shown in Lemma 4.3.0.2, it can used to derive a canonical distributive law

λP . It is not hard to see that the minimal pointed λP-bialgebra M accepting L exists

and that its underlying state space is given by the finite complete join-semi lattice

Der(L)
CSL

. By Lemma 4.4.0.3 the join-irreducibles for M constitute a size-minimal

generator G. By definition, the canonical RFSA for L is given by X := gen(M,G).

From Lemma 4.6.1.1 it follows that im(obsexpP (X)) ≃ Der(L)
CSL

. As seen in e.g.

Corollary 4.6.1.2, one has im(obsexpP (Y)) = im(obs†Y)
CSL

for any NFA Y . By choosing

α as the identity, which implies α-closedness for any NFA, the statement thus follows

from Theorem 4.6.0.5.

The second condition in Theorem 4.6.0.5 is always satisfied for a reachable succinct

automaton Y . Since for Z2-weighted automata it is possible to find an equivalent

reachable Z2-weighted automaton with less or equally many states (which for NFA

is not necessarily the case), the minimal xor automaton is minimal among all Z2-

weighted automata, as was already known from for instance [156].

Corollary 4.6.1.4. The minimal xor automaton for L is size-minimal among Z2-

weighted automata accepting L.

Proof. Analogous to Corollary 4.6.1.3 one can show that the minimal xor automaton

for L ⊆ A∗ is size-minimal among all Z2-weighted automata Y accepting L such

that im(obs†Y)
Z2-Vect

⊆ Der(L)
Z2-Vect

. Specific to this case are Lemma 4.3.0.6 and

Lemma 4.4.0.4. It remains to observe that for any Z2-weighted automaton X , one

can find an equivalent Z2-weighted automaton Y with a state space of size not greater

than the one of X , such that above inclusion holds. The state space of Y can be

chosen as a basis for the underlying vector space of the epi-mono factorisation of the

reachability map X (A∗) → im(obs†X)
Z2-Vect

.

For the átomaton, the distromaton, and the minimal xor-CABA automaton the

distributive law homomorphism α in play is non-trivial; α-closedness translates to the

below equalities between closures. In all three cases it is possible to waive the inclusion

induced by the second point in Theorem 4.6.0.5. The proof of the minimality result

154 Chapter 4. Canonical Automata

for the átomaton (Corollary 4.6.1.8) requires the following three technical results

(Corollary 4.6.1.5, Corollary 4.6.1.2, Corollary 4.6.1.7).

Corollary 4.6.1.5. Let αX : PX → HX satisfy αX(ϕ)(ψ) = ∨x∈Xϕ(x) ∧ ψ(x). If

B = (X, h) is a finite H-algebra, then (At(B), i, d) with i(a) = a and d(x) = {a ∈
At(B) | a ≤ x} is a size-minimal generator for (X, h ◦ αX).

Proof. By Lemma 4.5.3.2 (At(B), i, d) is a basis for (X, h ◦ αX). Analogously to

Lemma 4.4.0.4, it follows that any finite basis for a P-algebra is a size-minimal gen-

erator.

Lemma 4.6.1.6 ([121]). Let A be a sub-lattice of a finite distributive lattice B, then

|J(A)| ≤ |J(B)|.

Proof. For x ∈ J(B) define x̂ :=
󰁙
{y ∈ A | x ≤ y} ≥ x. To see that x̂ ∈ J(A),

assume x̂ = y ∨ z for y, z ∈ A. By distributivity we have x = x̂ ∧ x = (y ∨ z) ∧ x =

(y ∧ x) ∨ (z ∧ x). Since x ∈ J(B), it thus follows w.l.o.g. x = y ∧ x, which implies

x ≤ y. Consequently x̂ ≤ y ≤ x̂, i.e. x̂ = y. Let z ∈ J(A), then the join-density of

join-irreducibles implies

z = ∨{x ∈ J(B) | x ≤ z} = ∨{x̂ ∈ J(A) | x ∈ J(B) : x ≤ z}.

Since z is join-irreducible it follows z = 󰁥xz for some xz ∈ J(B) with xz ≤ z. We thus

find J(A) = {x̂ | x ∈ J(B)}, which implies the claim |J(A)| ≤ |J(B)|.

Corollary 4.6.1.7. Let A be a sub-algebra of a finite atomic Boolean algebra B.

Then |At(A)| ≤ |At(B)|.

Proof. For atomic Boolean algebras, join-irreducibles and atoms coincide. Every

Boolean algebra is in particular a distributive lattice. The claim thus follows from

Lemma 4.6.1.6.

Corollary 4.6.1.8. The átomaton for L is size-minimal among non-deterministic

automata Y accepting L with im(obs†Y)
CSL

= im(obs†Y)
CABA

.

Proof. Let α : λH → λP be the distributive law homomorphism in Corollary 4.5.3.1.

4.6. Minimality 155

• By Corollary 4.6.1.2 and the definition of α-closedness, any non-deterministic

automaton Y satisfies im(obs†Y)
CSL

= im(obs†Y)
CABA

iff it is α-closed.

• LetM be the minimal pointed λH-bialgebra accepting L. The state-space ofM is

the finite set Der(L)
CABA

. By Corollary 4.6.1.5, the set At(Der(L)
CABA

) underlies

a size-minimal generator G for the algebraic part of α(M). The átomaton for

L can thus be recovered as the α-closed non-deterministic automaton X :=

gen(α(M),G) accepting L in Theorem 4.6.0.5. In particular, by the first bullet

point above, the átomaton thus lives in the class of non-deterministic automata

Y accepting L with im(obs†Y)
CSL

= im(obs†Y)
CABA

.

• Let Y be any non-deterministic automaton accepting L with im(obs†Y)
CSL

=

im(obs†Y)
CABA

and state-space Y . By construction, there exists an epimorphism

obsexpP (Y) : PY ↠ im(obs†Y)
CSL

, which turns Y into a generator for the finite P-

algebra B := im(obs†Y)
CSL

= im(obs†Y)
CABA

. As for CABAs join-irreducibles and

atoms coincide, the size-minimality of join-irreducibles in Lemma 4.4.0.3 thus

implies |At(B)| ≤ |Y |. By Theorem 4.6.0.5, we have that im(obsexpT (X)) ⊆ B,

where X denotes the átomaton. From Lemma 4.6.1.1 and the definition of X
it follows that im(obsexpT (X)) ∼= Der(L)

CABA
. We thus have Der(L)

CABA ⊆ B.

By Corollary 4.6.1.7, it follows |At(Der(L)CABA)| ≤ |At(B)|. Consequently we

can deduce |At(Der(L)CABA)| ≤ |Y |, which shows that the átomaton is size-

minimal.

The above result can be shown to be similar to [119, Theorem 4.9], which char-

acterises the átomaton as size-minimal among non-deterministic automata whose ac-

cepted languages are closed under complement.

Corollary 4.6.1.10 below is very similar to a characterisation of the distromaton as

size-minimal among non-deterministic automata whose accepted languages are closed

under intersection [119, Theorem 4.13]. The proof of Corollary 4.6.1.10 requires the

following technical result.

Corollary 4.6.1.9. Let α : PX → AX satisfy αX(ϕ)(ψ) = ∨x∈Xϕ(x) ∧ ψ(x). For

any unpointed non-deterministic automaton X it holds:

156 Chapter 4. Canonical Automata

• im(obsexpP (X)) = im(obs†X)
CSL

;

• im(obsα(expA(ext(X)))) = im(obs†X)
CDL

.

Proof. Analogous to the proof of Corollary 4.6.1.2.

Corollary 4.6.1.10. The distromaton for L is size-minimal among non-deterministic

automata Y accepting L with im(obs†Y)
CSL

= im(obs†Y)
CDL

.

Proof. Analogous to the proof of Corollary 4.6.1.8. Specific to this case are the results

Lemma 4.3.0.3, Lemma 4.3.0.5, Corollary 4.5.4.1, Lemma 4.4.0.3, Lemma 4.6.1.6, and

Corollary 4.6.1.9.

The size-minimality result (Corollary 4.6.1.12) for the newly discovered minimal

xor-CABA automaton is analogous to the ones for the átomaton and the distromaton.

It requires the following technical result.

Corollary 4.6.1.11. Let α : RX → HX satisfy αX(ϕ)(ψ) =
󰁏

x∈X ϕ(x) · ψ(x). For
any unpointed Z2-weighted automaton X it holds:

• im(obsexpR(X)) = im(obs†X)
Z2-Vect

;

• im(obsα(expH(ext(X)))) = im(obs†X)
CABA

.

Proof. Analogous to the proof of Corollary 4.6.1.2.

Corollary 4.6.1.12. The minimal xor-CABA automaton for L is size-minimal among

Z2-weighted automata Y accepting L with im(obs†Y)
Z2-Vect

= im(obs†Y)
CABA

.

Proof. Analogous to the proof of Corollary 4.6.1.8. Specific to this case are Lemma 4.3.0.4,

Lemma 4.3.0.6, Corollary 4.5.5.1, Lemma 4.4.0.4, Corollary 4.6.1.11 and the obser-

vation that if A ⊆ B is a subvector space of a finite vector space B, then dim(A) ≤
dim(B).

We conclude with a size-comparison between acceptors that is parametric in the

closure of derivatives.

4.6. Minimality 157

Corollary 4.6.1.13. • If Der(L)
Z2-Vect

= Der(L)
CABA

, then the minimal xor au-

tomaton and the minimal xor-CABA automaton for L are of the same size.

• If Der(L)
CSL

= Der(L)
CDL

, then the canonical RFSA and the distromaton for L

are of the same size.

• If Der(L)
CSL

= Der(L)
CABA

, then the canonical RFSA and the átomaton for L

are of the same size.

Proof. • By Corollary 4.6.1.4 the minimal xor automaton X is of size not greater

than the minimal xor-CABA automaton Y . Conversely, we find

Der(L)
CABA

= Der(L)
Z2-Vect

(Assumption)

= im(obsexpR(X)) (Lemma 4.6.1.1)

= im(obs†X)
Z2-Vect

(Corollary 4.6.1.11)

which can be used to show im(obs†X)
Z2-Vect

= im(obs†X)
CABA

. By Corollary 4.6.1.12

the latter implies that Y is of size not greater than X , which shows the claim.

• Let X denote the canonical RFSA and Y the distromaton. On the one hand

we find

Der(L)
CSL

= Der(L)
CDL

(Assumption)

= im(obsexpP (Y)) (Lemma 4.6.1.1)

= im(obs†Y)
CSL

(Corollary 4.6.1.9)

which by Corollary 4.6.1.3 implies that X is of size not greater than Y . Con-

versely, we establish the equality

Der(L)
CDL

= Der(L)
CSL

(Assumption)

= im(obsexpP (X)) (Lemma 4.6.1.1)

= im(obs†X)
CSL

(Corollary 4.6.1.9)

158 Chapter 4. Canonical Automata

which can be used to show im(obs†X)
CSL

= im(obs†X)
CDL

. By Corollary 4.6.1.10

the latter implies that Y is of size not greater than X , which shows the claim.

• The proof for the átomaton is analogous to the proof for the distromaton in the

previous point.

4.7 Related Work

One of the motivations for our work are active learning algorithms for the derivation

of succinct state-based models [14]. A major challenge in learning non-deterministic

models is the lack of a canonical target acceptor for a given language [49]. The problem

has been independently approached for different variants of non-determinism, often

with the idea of finding a subclass admitting a unique representative [53, 28] such as

the canonical RFSA, the minimal xor automaton, or the átomaton.

A more general and unifying perspective on learning automata that may not have

a canonical target was given by Van Heerdt [66, 63, 64]. One of the central notions in

this work is the concept of a scoop, originally introduced by Arbib and Manes [19] and

here referred to as a generator. The main contribution in [66] is a general procedure

to find irreducible sets of generators, which thus restricts the work to the category of

sets. In this chapter we generally work over arbitrary categories, although we assume

the existence of a minimal set-based generator in Theorem 4.6.0.5. Furthermore, the

work of Van Heerdt has no size-minimality results.

Closely related to the content of this chapter is the work of Myers et al. [119], who

present a coalgebraic construction for canonical non-deterministic automata. They

cover the canonical RFSA, the minimal xor automaton, the átomaton, and the dis-

tromaton. The underlying idea in [119] for finding succinct representations is similar

to ours: first they build the minimal DFA for a regular language in a locally finite

variety, then they apply an equivalence between the category of finite algebras and a

suitable category of finite structured sets and relations. On the one hand, the cate-

gory of finite algebras in a locally finite variety can be translated into our setting by

considering a category of algebras over a monad preserving finite sets. In fact, modulo

this translation, many of the categories considered here already appear in [119], e.g.

4.8. Discussion and Future Work 159

vector spaces, Boolean algebras, complete join-semi lattices, and distributive lattices.

On the other hand, their construction seems to be restricted to the category of sets

and non-deterministic automata, while we work over arbitrary monads on arbitrary

categories. Their work does not provide a general algorithm to construct a succinct

automaton, i.e., the specifics vary with the equivalences considered, while we give a

general definition and a soundness argument in Corollary 4.5.1.3. While Myers et

al. [119] give minimality results for a wide range of acceptors, each proof follows

case-specific arguments. In Theorem 4.6.0.5 we provide a unifying minimality result

for succinct automata that implies Corollary 4.6.1.8 (cf. [119, Theorem 4.9]), Corol-

lary 4.6.1.4 (cf. [119, Theorem 4.10]), Corollary 4.6.1.3 (cf. [119, Corollary 4.11]),

Corollary 4.6.1.10 (cf. [119, Theorem 4.13]).

4.8 Discussion and Future Work

We have presented a general categorical framework based on bialgebras and distribu-

tive law homomorphisms for the derivation of canonical automata. The framework

instantiates to a wide range of well-known examples from the literature and allowed

us to discover a previously unknown canonical acceptor for regular languages. Finally,

we presented a theorem that subsumes previously independently proven minimality

results for canonical acceptors, implied new characterisations, and allowed us to make

size-comparisons between canonical automata.

In the future, we would like to cover other examples, such as the canonical prob-

abilistic RFSA [53] and the canonical alternating RFSA [28, 17]. Probabilistic au-

tomata of the type in [53] are typically modelled as TF -coalgebras instead of FT -

coalgebras [81], and thus will need a shift in perspective. For alternating RFSAs we

expect a canonical form can be constructed in the spirit of this work, from generators

for algebras over the neighbourhood monad, by interpreting the join-dense atoms of

a CABA as a full meet of ground elements.

Generally, it would be valuable to have a more systematic treatment of the range

of available monads and distributive law homomorphisms [162], making use of the

fact that distributive law homomorphisms compose.

Further generalisation in another direction could be achieved by distributive laws

160 Chapter 4. Canonical Automata

between monads and endofunctors on different categories. For instance, we expect

that operations on automata as the product can be captured by homomorphisms

between distributive laws of such more general type.

Finally, we would like to lift existing double-reversal characterisations of the min-

imal DFA [38], the átomaton [39], the distromaton [119], and the minimal xor au-

tomaton [156] to general canonical automata. The work in [34, 33] gives a coalgebraic

generalisation of Brzozowski’s algorithm based on dualities between categories, but

does not cover the cases we are interested in. The framework in [6] recovers the

átomaton as the result of a minimisation procedure, but does not consider other

canonical acceptors.

Chapter 5

Generating Monadic Closures

We have seen that every regular language admits a unique size-minimal deterministic

acceptor, while there can be several size-minimal non-deterministic acceptors that

are not isomorphic (cf. Figure 4.1). We also have seen that to tackle this issue,

authors have identified a number of sub-classes of non-deterministic automata, all

admitting canonical minimal representatives. In Chapter 4 we demonstrated that

such representatives can generally be recovered categorically in two steps. First, one

constructs the minimal bialgebra accepting a given regular language, by closing the

minimal coalgebra with additional algebraic structure over a monad. Second, one

identifies canonical generators for the algebraic part of the bialgebra, to derive an

equivalent coalgebra with side effects in a monad. In this chapter, we further develop

the general theory underlying these two steps. On the one hand, we show that deriving

a minimal bialgebra from a minimal coalgebra can be realized by applying a monad

on an appropriate category of subobjects. On the other hand, we explore the abstract

theory of generators and bases for algebras over a monad.

5.1 Introduction

Recall that the framework for the construction of canonical automata in Chapter 4

adopts the well-known representation of automata as coalgebras (Definition 2.2.0.12)

and side-effects like non-determinism as monads (Definition 2.2.0.7). For instance, an

NFA (without initial states) is represented as a coalgebra k : X → 2 × P(X)A with

161

162 Chapter 5. Generating Monadic Closures

side-effects in the powerset monad P .

To derive canonical non-deterministic acceptors, we suggested an idea that is

closely related to the (generalised) powerset construction of Example 4.3.0.7. Under

the latter construction, a coalgebra k : X → FTX with dynamics in a functor

F and side-effects in a monad T is transformed into an equivalent coalgebra k󰂒 :

TX → FTX [140]. The deterministic automata resulting from such determinisation

constructions have additional algebraic structure: the state-space TX defines a (free)

algebra for the monad T , and k󰂒 is a T -algebra homomorphism, thus constituting

a bialgebra over a distributive law relating F and T (Definition 4.3.0.8). Using the

powerset construction, we were able to obtain a canonical succinct acceptor for a

regular language L ⊆ A∗ by consecutively following two steps.

First, we constructed the minimal1 pointed coalgebra ML for the functor F =

2×(−)A accepting L. We then equipped the former with additional algebraic structure

in a monad T by applying the determinisation procedure toML when seen as coalgebra

with trivial side-effects in T (cf. Corollary 4.3.0.11). By identifying semantically

equivalent states, we then derived the minimal2 (pointed) bialgebra for L.

Second, we exploited the additional algebraic structure underlying the minimal

bialgebra for L to “reverse” the generalised determinisation procedure. That is, we

identified canonical generators (Definition 4.4.0.1) to derive an equivalent succinct

automaton with side-effects in T (cf. Proposition 4.4.0.5).

In this chapter, we further develop the general theory underlying these two steps

by making the following contributions, respectively:

• We generalise the closure of a subset of an algebraic structure with respect

to the latter as a functor between categories of subobjects relative to a fac-

torisation system (Proposition 5.2.3.1). We then equip the functor with the

structure of a monad (Theorem 5.2.4.2). We investigate the closure of a par-

ticular subclass of subobjects: the ones that arise by taking the image of a

morphism (Lemma 5.2.5.1). We show that deriving a minimal bialgebra from

1Minimal in the sense that every state is reachable by an element of A∗ and no two different
states observe the same language.

2Minimal in the sense that every state is reachable by an element of T (A∗) and no two different
states observe the same language.

5.2. Step 1: Closure 163

a minimal coalgebra can be realized by applying the monad to a subobject in

this particular class (Example 5.2.5.2).

• We define a category of algebras with generators (Definition 5.3.1.1), which is

in adjunction with the category of Eilenberg-Moore algebras (Lemma 5.3.1.2),

and, under certain assumptions, monoidal (Corollary 5.3.2.2). We generalise

the matrix representation theory of vector spaces (Section 5.3.3) and discuss

bases for bialgebras, which are algebras over a particular monad (Section 5.3.4).

We compare our ideas with an approach that generalises bases as coalgebras

(Section 5.3.5). We find that a basis in our sense induces a basis the sense of

[77] (Lemma 5.3.5.1), and identify assumptions under which the reverse is true,

too. We characterise generators for finitary varieties in the sense of universal

algebra (Lemma 5.3.6.1) and relate our work to the theory of locally finitely

presentable categories (Proposition 5.3.7.1).

5.2 Step 1: Closure

In this section, we further explore the categorical construction of minimal canonical

acceptors given in Chapter 4. In particular, we show that deriving a minimal bialgebra

from a minimal coalgebra by closing the latter with additional algebraic structure has

a direct analogue in universal algebra: taking the closure of a subset of an algebra.

5.2.1 Factorisation Systems and Subobjects

In the category of sets and functions, every morphism can be factored into a surjection

onto its image followed by an injection into the codomain of the morphism. In this

section, we recall an abstraction of this phenomenon for arbitrary categories. The

ideas are well established [36, 129, 106]. We choose to adapt the formalism of [4].

Definition 5.2.1.1 (Factorisation System). Let E and M be classes of morphisms

in a category C . We call the pair (E ,M) a factorisation system for C if the following

three conditions hold:

(F1) Each of E and M is closed under composition with isomorphisms.

164 Chapter 5. Generating Monadic Closures

(F2) Each morphism f in C can be factored as f = m ◦ e, with e ∈ E and m ∈ M .

(F3) For each commutative square with e ∈ E and m ∈ M as on the left below

· ·

· ·

e

f g

m

· ·

· ·

e

f g
d

m

there exists a unique diagonal d such that the diagram on the right above

commutes.

We will use double headed (↠) and hooked (↩→) arrows to indicate that a mor-

phism is in E and M , respectively. If f factors into e and m, we call the codomain

of e, or equivalently, the domain of m, the image of f and denote it by im(f).

One can show that each of E and M contains all isomorphisms and is closed under

composition [4, Prop. 14.6]. From the uniqueness condition on the diagonal one can

deduce that factorisations are unique up to unique isomorphism [4, Prop. 14.4]. It

further follows that E has the right cancellation property, that is g ◦f ∈ E and f ∈ E

implies g ∈ E . Dually, M has the left cancellation property, that is, g ◦ f ∈ M and

g ∈ M implies f ∈ M [4, Prop. 14.9].

As intended, in the category of sets and functions, surjective and injective func-

tions, or equivalently, epi- and monomorphisms, constitute a factorisation system

[4, Ex. 14.2]. More involved examples can be constructed for e.g. the category of

topological spaces or the category of categories [4, Ex. 14.2]. We are particularly

interested in factorisation systems for the category of algebras over a monad.

The naive categorical generalisation of a subset Y ⊆ X is a monomorphism Y →
X. Since in the category of sets epi- and monomorphism constitute a factorisation

system, we may generalise subsets to arbitrary categories C with a factorisation

system (E ,M) in the following way:

Definition 5.2.1.2 (Subobjects). A subobject of an object X ∈ C is a morphism

mY : Y ↩→ X ∈ M . A morphism f : mY1 → mY2 between subobjects of X consists

of a morphism f : Y1 → Y2 such that mY2 ◦ f = mY1 .

The category of (isomorphism classes of) subobjects of X is denoted by Sub(X).

5.2. Step 1: Closure 165

As M has the left cancellation property, every morphism between subobjects in

fact lies in M . We work with isomorphism classes of subobjects since factorisations of

morphisms are only defined up to unique isomorphism. For epi-mono factorisations,

there is at most one morphism between any two subobjects, that is, Sub(X) is simply

a partially ordered set.

5.2.2 Factorising Algebra Homomorphisms

In this section, we recall that if one is given a category C with a factorisation system

(E ,M) and a monad T on C that preserves E (i.e. satisfies T (e) ∈ E for all e ∈ E),

it is possible to lift the factorisation system of the base category C to a factorisation

system on the category of Eilenberg-Moore algebras C T . The result appears in e.g.

[158] and may be extended to algebras over an endofunctor. Alternatively, it can be

stated in its dual version: if an endofunctor on C preserves M , it is possible to lift

the factorisation system of C to the category of coalgebras [95, 158].

The factorisation system we propose for C T consists of those algebra homomor-

phisms, whose underlying morphism lies in E or M , respectively. Clearly such a

system preserves (F1). The next result shows that it also satisfies (F3). Note that

the statement is slightly more general, as it holds not just for Eilenberg-Moore alge-

bras over the monad T , but for algebras over the underlying endofunctor.

Lemma 5.2.2.1 ([158, Lem. 3.6]). For each commutative square of homomorphisms

between algebras for the endofunctor T as on the left below

(A, hA) (B, hB)

(C, hC) (D, hD)

e

f g

m

(A, hA) (B, hB)

(C, hC) (D, hD)

e

f g
d

m

there exists a unique diagonal d : (B, hB) → (C, hC) such that the diagram on the

right above commutes.

Proof. The proof for [158, Lem. 3.6] consists of a corollary to the dual statement for

coalgebras [158, Lem. 3.3]. Below we offer an explicit version for algebras.

166 Chapter 5. Generating Monadic Closures

Since any commuting diagram of algebra homomorphism projects to a commuting

diagram in C , the factorisation system of C implies the existence of a unique diagonal

d in C . It remains to show that d is an algebra homomorphism, that is, we need to

establish the following identity:

hC ◦ Td = d ◦ hB.

To this end, we observe that since the following two diagrams commute

TA TB

A TC TD B

C D

Tf
hA

Te

Tg
Td hB

f
hC

Tm
hD g

m

TA TB

A B B

C D

Te

hA
hB

hB

f

e

d

g
g

m

both hC ◦ Td and d ◦ hB are solutions to the unique diagonal below:

TA TB

C D

Te

f◦hA g◦hB

m

.

Let us now show that the proposed factorisation system satisfies (F2). Assume

we are given a homomorphism f as on the left of Figure 5.1. Using the factorisation

system of the base category C , we can factorise it, as ordinary morphism, into e ∈ E

andm ∈ M . In consequence the outer square of the diagram on the right of Figure 5.1

commutes. Since by assumption the morphism Te is again in E , we thus find a unique

diagonal him(f) in C that makes the triangles on the right of Figure 5.1 commute. The

result below shows that him(f) equips im(f) with the structure of a T -algebra.

Lemma 5.2.2.2 ([158, Prop. 3.7]). (im(f), him(f)) is an Eilenberg-Moore T -algebra.

5.2. Step 1: Closure 167

TX TY

X Y

hX

Tf

hY

f

X im(f)

Y

e

f
m

TX T im(f)

im(f) Y

e◦hX

Te

hY ◦Tm
him(f)

m

Figure 5.1: Factorising a T -algebra homomorphism via the factorisation system of a
base category

Proof. We need to establish the following two identities

him(f) ◦ ηim(f) = idim(f)

him(f) ◦ µim(f) = him(f) ◦ Thim(f)

where the latter captures that him(f) : (T im(f), µim(f)) → (im(f), him(f)) is a T -algebra

homomorphism.

For the first equality, we observe (as in the proof for ([158, Prop. 3.7])) that since

the diagram below commutes

X X im(f)

TX T im(f) TY Y

im(f) im(f) Y

1

e

ηX

e

mηim(f)

e◦hX

Te

him(f)

Tm

hY

ηY

1

1 m

both him(f) ◦ ηim(f) and idim(f) are solutions to the unique diagonal in C below:

X im(f)

im(f) Y

e

e

m

m

.

Similarly, for the second equality, we observe that since the following two diagrams

168 Chapter 5. Generating Monadic Closures

commute

T 2X T 2im(f)

T 2Y

TX T im(f) TY TY

im(f) im(f) Y

µX

T 2e

µim(f)

T 2m

ThYµY

e◦hX

Te

him(f)

Tm

hY hY

1 m

T 2X T 2X T 2im(f)

TX TX T 2Y

X T im(f) TY

im(f) Y

1

µX ThX

T 2e

Thim(f)

T 2m

hX
hX

Te ThY

e
him(f)

Tm

hY

m

both h
im(f)

◦ µim(f) and him(f) ◦ Thim(f) are solutions to the unique diagonal below:

T 2X T 2im(f)

im(f) Y

e◦hX◦µX

T 2e

hY ◦ThY ◦T 2m

m

Alternatively (as in the proof for [158, Prop. 3.7]), one may observe that since the

following outer square of homomorphisms between algebras for the endofunctor T

commutes
(TX, µX) (T im(f), µim(f))

(im(f), him(f)) (Y, hY)

Te

e◦hX hY ◦Tm

m

Lemma 5.2.2.1 implies the existence of a unique diagonal algebra homomorphism

making the two triangles above commute. As we know that the diagonal coincides

with the unique diagonal of the corresponding diagram in C , which is given by him(f),

we can deduce that the latter is a T -algebra homomorphism.

We thus obtain the following factorisation of f into Eilenberg-Moore T -algebra

homomorphisms:

f = (X, hX)
e↠ (im(f), him(f))

m
↩→ (Y, hY).

5.2. Step 1: Closure 169

5.2.3 The Subobject Closure Functor

While subobjects in the category of sets generalise subsets, subobjects in the category

of algebras generalise subalgebras. By taking the algebraic closure of a subset of an

algebra one can thus transition from one category of subobjects to the other.

In this section, we generalise this phenomenon from the category of sets to more

general categories. As before, we assume a base category C with a factorisation

system (E ,M) and a monad T on C that preserves E . Our aim is to construct, for

any T -algebra X with carrier X, a functor from the subobjects Sub(X) in C to the

subobjects Sub(X) in C T that assigns to a subobject of X its closure, that is, the

least T -subalgebra of X containing it.

Recall the natural isomorphism that witnesses the free Eilenberg-Moore algebra

adjunction. For any object Y in C and T -algebra X = (X, h), it maps a morphism

ϕ : Y → X to the T -algebra homomorphism ϕ󰂒 := h ◦ Tϕ : (TY, µY) → (X, h).

In Section 5.2.2 we have seen that the factorisation system of C naturally lifts to a

factorisation system on the category of T -algebras. In particular, we know that up

to isomorphism the homomorphism ϕ󰂒 admits a factorisation of the following form:

ϕ󰂒 = (TY, µY)
e
im(ϕ󰂒)

↠ (im(ϕ󰂒), him(ϕ󰂒))
m

im(ϕ󰂒)

↩→ (X, h).

In the case that the morphism ϕ is given by a subobject

mY : Y → X ∈ M ,

the above construction yields a second subobject

mY : Y → X ∈ M ,

where Y := (im(m󰂒
Y), him(m󰂒

Y)). Since for a morphism f : mY1 → mY2 between sub-

objects of X the diagram on the left of (5.1) below commutes, there further exists

a unique diagonal algebra homomorphism f : mY1
→ mY2

between subobjects of X
making the two triangles on the right of (5.1) commute:

170 Chapter 5. Generating Monadic Closures

(TY1, µY1) (Y1, hY1
)

(TY2, µY2) (TX, µX)

(Y2, hY2
) (X, h)

eY1

TmY1
Tf

mY1

eY2

TmY2

h

mY2

(TY1, µY1) (Y1, hY)

(Y2, hY2) (X, h)

eY1

eY2
◦Tf mY1

f

mY2

. (5.1)

The following result shows that the above constructions are compositional.

Proposition 5.2.3.1. The assignments mY 󰀁→ mY and f 󰀁→ f yield a functor

(·)X : Sub(X) → Sub(X).

Proof. We need to establish the identities

idY = idY and f ◦ g = f ◦ g.

As before, the equations follow from the uniqueness of diagonals and the commuta-

tivity of the left, respectively right, diagram below:

(TY, µY) (Y , hY)

(Y , hY) (X, h)

eY

eY ◦T (idY) mY
idY

mY

(TY1, µY1) (Y1, hY1
)

(TY2, µY2) (Y2, hY2
)

(TY3, µY3)

(Y3, hY3
) (X, h)

eY1

Tg

mY1

g

Tf

eY2

f

mY2

eY3

mY3

.

5.2. Step 1: Closure 171

Let us instantiate above result for the free vector space monad on the category of

sets equipped with its canonical surjective-injective factorisation system.

Example 5.2.3.2. Given an injective embedding mY of some set Y into a vector

space V, one easily verifies that the lifting (mY)
󰂒 maps a formal linear combination

󰁓
i λi · yi to the vector

󰁓
i λi · mY (yi) in V . The image Y is thus given by the

vector space that consists of equivalence classes of formal linear combinations, and

the injection mY interprets representatives as demonstrated. In particular, if Y is a

subset of V, that is, mY (y) = y for all y ∈ Y , the closure can be recognised as the

sub vector space of V generated by Y .

Mapping an algebra homomorphism with codomain X to the M -part of its fac-

torisation extends to a functor from the slice category3 over X to the category of

subobjects of X. Similarly, one observes that the free Eilenberg-Moore algebra ad-

junction gives rise to a functor from the slice category over X to the slice category

over X. Finally, it is clear that there exists a functor from the category of subobjects

of X to the slice category over X. The functor defined in Proposition 5.2.3.1 can thus

be recognised as the following composition:

C /X C T/X

Sub(X) Sub(X)(·)X
. (5.2)

5.2.4 The Subobject Closure Monad

In this section, we show that the functor (·)X in Proposition 5.2.3.1 induces a monad

on the category of subobjects Sub(X). As before, we assume a base category C with

a factorisation system (E ,M) and a monad T = (T, η, µ) on C that preserves E .

We begin by establishing the following two technical identities, which assume a

T -algebra X = (X, h) and a subobject mY : Y ↩→ X ∈ M .

Lemma 5.2.4.1. The following two equalities hold:

3The slice category C /X of a category C over an object X ∈ C has as objects (isomorphism
classes of) morphisms gY : Y → X with codomain X, and a morphism f : gY1 → gY2 consists of a
morphism f : Y1 → Y2 in C that satisfies gY1 = gY2 ◦ f .

172 Chapter 5. Generating Monadic Closures

• mY ◦ eY ◦ ηY = mY

• mY ◦ eY ◦ µY = m
Y
◦ e

Y
◦ TeY

Proof. For the first identity we observe:

mY ◦ eY ◦ ηY = m󰂒
Y ◦ ηY (mY ◦ eY = m󰂒

Y)

= h ◦ TmY ◦ ηY (Definition of m󰂒
Y)

= h ◦ ηX ◦mY (Naturality of η)

= mY (h ◦ ηX = idX).

Similarly, for the second identity we deduce:

mY ◦ eY ◦ µY = m󰂒
Y ◦ µY (mY ◦ eY = m󰂒

Y)

= h ◦ TmY ◦ µY (Definition of m󰂒
Y)

= h ◦ µX ◦ T 2mY (Naturality of µ)

= h ◦ Th ◦ T 2mY (h ◦ µX = h ◦ Th)

= h ◦ Tm󰂒
Y (Definition of m󰂒

Y)

= h ◦ TmY ◦ TeY (m󰂒
Y = mY ◦ eY)

= m󰂒

Y
◦ TeY (Definition of m󰂒

Y
)

= m
Y
◦ e

Y
◦ TeY (m󰂒

Y
= m

Y
◦ e

Y
).

In consequence, we can define candidates for the monad unit ηX and the monad

multiplication µX, respectively, as the unique diagonals below:

Y Y

Y X

1

eY ◦ηY
ηXmY

mY

mY

T 2Y Y

Y X

e
Y
◦TeY

eY ◦µY

µX
mY

m
Y

mY

. (5.3)

5.2. Step 1: Closure 173

By construction both morphisms are homomorphisms of subobjects:

ηXmY
: mY −→ mY µX

mY
: m

Y
−→ mY .

The remaining proofs of naturality and the monad laws are covered below. By

a slight abuse of notation, we write (·)X for the endofunctor on Sub(X) that arises

by post-composition of the functor in Proposition 5.2.3.1 with the canonical forgetful

functor from Sub(X) to Sub(X).

Theorem 5.2.4.2. ((·)X, ηX, µX) is a monad on Sub(X).

Proof. On the one hand, we have to establish the naturality of ηX and µX, that is,

the identities

f ◦ ηXmY1
= ηXmY2

◦ f

f ◦ µX
mY1

= µX
mY2

◦ f
(5.4)

for any subobject homomorphism f : mY1 → mY2 . On the other hand, we need to

establish the unitality and associativity laws:

µX
mY

◦ ηXmY
= idY = µX

mY
◦ ηXmY

µX
mY

◦ µX
mY

= µX
mY

◦ µX
mY

.
(5.5)

The first equation of (5.4) follows from the commutativity of the diagram below:

Y1 Y1 Y2 Y2

TY1 TY2

Y1 Y1 Y2

1

ηXmY1

ηY1

f

ηY1

1

ηXmY2

Tf

eY1
eY2

1 f

.

For the second equation of (5.4) we observe that since the following two diagrams

174 Chapter 5. Generating Monadic Closures

commute

T 2Y1 Y1

TY1 Y1

Y2 X

µY1

e
Y1

◦TeY1

µX
mY1

m
Y1

eY1

eY2
◦Tf

f

mY1

mY2

T 2Y1 T 2Y1 TY1 Y1

TY2 T 2Y2 TY2

Y2

Y2 X

1

Tf◦µY1 T 2f

TeY1

Tf

e
Y1

f

m
Y1

eY2

µY2

TeY2

e
Y2

µX
mY2

m
Y2

mY2

both f ◦ µX
mY1

and µX
mY2

◦ f are solutions to the unique diagonal below:

T 2Y1 Y1

Y2 X

e
Y1

◦TeY1

eY2
◦Tf◦µY1

m
Y1

mY2

.

For the first equation of (5.5) we observe that since the following diagrams commute

TY TY Y Y

T 2Y TY

TY TY Y

Y Y X

1

1

ηTY

eY

ηY

1

ηXm
Y mY

TeY

µY
e
Y

1

eY eY
µX
mY

m
Y

1 mY

TY TY TY Y

T 2Y TY

TY TY Y

Y Y Y X

1

1

TηY

1

TηXmY

eY

ηXmY mY

TeY

µY
e
Y

1

eY eY µX
mY

m
Y

1 1 mY

5.2. Step 1: Closure 175

all three morphisms µX
mY

◦ηXmY
, idY and µX

mY
◦ηXmY

are solutions to the unique diagonal:

TY Y

Y X

eY

eY mY

mY

.

Similarly, for the second equation of (5.5) we note that since the following two

diagrams commute

T 3Y T 2X Y

T 2Y TY

Y

Y X

µTY

T 2eY

µY

e
Y
◦Te

Y

µX
m

Y m
Y

TeY

eY ◦µY

e
Y

µX
mY

m
Y

mY

T 3Y T 3Y TY Y

T 2Y T 2Y TY

TY TY Y

Y Y X

1

µTY TµY

Te
Y
◦T 2eY

TµX
mY

e
Y

µX
mY m

Y
µY µY

TeY e
Y

eY

1

eY
µX
mY

m
Y

1 mY

both morphisms µX
mY

◦µX
mY

and µX
mY

◦µX
mY

are solutions to the unique diagonal below:

T 3Y Y

Y X

eY ◦µY ◦µTY

e
Y
◦Te

Y
◦T 2eY

m
Y

mY

.

As before, we exemplify Theorem 5.2.4.2 for the free vector space monad on the

category of sets and functions with its canonical factorisation system.

Example 5.2.4.3. We have previously seen that the closure of a subobject mY of a

vector space V consists of formal linear combinations that are considered equivalent,

if their interpretation in V via mY coincides. By construction (cf. (5.3)), the monad

unit ηVmY
maps an element y ∈ Y to the equivalence class [1 · y] in Y . One further

verifies that the multiplication µV
mY

assigns to the element [
󰁓

[ϕ] λ[ϕ] · [ϕ]] in Y the

176 Chapter 5. Generating Monadic Closures

element [
󰁓

x(
󰁓

[ϕ] λ[ϕ] · ϕ(y)) · y] in Y . If Y is a subset of V, that is, mY (y) = y for

all y ∈ Y , the multiplication thus flattens vectors of vectors in the usual way.

We will now show that the mapping of an algebra X to the monad (·)X in Theo-

rem 5.2.4.2 extends to algebra homomorphisms. To this end, for any algebra homo-

morphism f : A → B in M , let f∗ : Sub(A) → Sub(B) be the induced functor defined

by f∗(mX) = f ◦mX and f∗(g) = g. The result below shows that f∗ can be extended

to a morphism between monads.

Lemma 5.2.4.4. For any f : A → B ∈ M , there exists a monad morphism (f∗,α) :

(Sub(A), (·)A) → (Sub(B), (·)B).

Proof. We need to define a natural transformation α : (·)B ◦ f∗ ⇒ f∗ ◦ (·)
A
between

functors of type Sub(A) → Sub(B). That is, for any subobject mX : X → A, we

require a homomorphism

αmX
: m

X
B → f ◦m

X
A

between subobjects of B. Since factorisations are unique up to unique isomorphism,

and the diagram on the left below commutes

TX X
B

TA TB

X
A

A B

e
X

A

e
X

B

TmX

hA

Tf

hB

m
X

A f

m
X

B

TX X
B

X
A

B

e
X

A

e
X

B

φmX

f◦m
X

A

m
X

B

there exists a unique homomorphism φmX
: m

X
B → f ◦ m

X
A of subobjects of B as

indicated on the right above. We thus propose the definition

αmX
:= φmX

.

We begin by showing that the above proposal turns α into a natural transformation.

Let g : mX → mY be a morphism of subobjects of A and f∗(g) = g : f∗(mX) →

5.2. Step 1: Closure 177

f∗(mY) the induced morphism of subobjects of B. We need to prove the equality

φmY
◦ f∗(g)

B
= gA ◦ φmX

.

To this end, note that, as the two diagrams below commute

TX X
B

X
A

Y
A

B

e
X

A

e
X

B

e
Y
A◦Tg m

X
B

φmX

gA

f◦m
X

A

f◦m
Y
A

TX X
B

TY Y
B

Y
A

B

Tg

e
X

B

m
X

B

f∗(g)
B

e
Y
A

e
Y
B

φmY

m
Y
B

f◦m
Y
A

both φmY
◦ f∗(g)

B
and gA ◦ φmX

are solutions to the unique diagonal below:

TX X
B

Y
A

B

e
X

B

e
Y
A◦Tg m

X
B

f◦m
Y
A

.

Finally, one verifies that the commutative diagrams turning (f∗,α) into a morphism

between monads correspond to the two equations

φmX
◦ µB

f∗(mX) = µA
mX

◦ φm
X

A ◦ φmX

B
ηAmX

= φmX
◦ ηBf∗(mX).

178 Chapter 5. Generating Monadic Closures

For the first equation we observe that since the two diagrams below commute

T 2X X
BB

TX X
B

X
A

B

e
X

BB◦Te
X

B

µX

m
X

BB

µB
f∗(mX)

e
X

A

e
X

B

φmX

m
X

B

f◦m
X

A

T 2X TX
B

X
BB

TX
A

X
AB

X
AA

X
A

B

e
X

A◦µX

Te
X

B

Te
X

A
TφmX

e
X

BB

m
X

BB

φmX

B

e
X

AA

e
X

AB

m
X

AB

φm
X

A

µA
mX

f◦m
X

AA

f◦m
X

A

both φmX
◦µB

f∗(mX) and µA
mX

◦φm
X

A ◦φmX

B
are solutions to the unique diagonal below:

T 2X X
BB

X
A

B

e
X

A◦µX

e
X

BB
◦Te

X
B

m
X

BB

f◦m
X

A

.

For the second equation we observe that since the two diagrams below commute

X X

X
A

B

1

e
X

A◦ηX
ηAmX

f◦mX

f◦m
X

A

X X

TX X
B

X
A

B

1

ηX

f◦mX

ηB
f∗(mX)

e
X

A

e
X

B

m
X

B

φmX

f◦m
X

A

5.2. Step 1: Closure 179

both ηAmX
and φmX

◦ ηBf∗(mX) are solutions to the unique diagonal below:

X X

X
A

B

1

e
X

A◦ηX f◦mX

f◦m
X

A

.

The next statement establishes that the canonical forgetful functor U : Sub(X) →
C defined by U(mY) = Y and U(f) = f extends to a morphism between monads.

Lemma 5.2.4.5. There exists a monad morphism (U,α) : (Sub(X), (·)X) → (C , T).

Proof. We propose the following definition:

α : T ◦ U ⇒ U ◦ (·)X αmY
:= eY : TY → Y .

From the definition of (·)X on morphisms it follows that α is a natural transforma-

tion. The commutative diagrams turning (U,α) into a morphism between monads

correspond to the following two equations:

µX
mY

◦ e
Y
◦ TeY = eY ◦ µY ηXmY

= eY ◦ ηY .

The equalities are satisfied by the definitions of ηX and µX, respectively.

We conclude with the observation that the monad morphism defined in Lemma 5.2.4.4

commutes with the monad morphisms defined in Lemma 5.2.4.5.

Lemma 5.2.4.6. For any algebra homomorphism f : A → B ∈ M , the following

diagram commutes:

(Sub(A), (·)A) (Sub(B), (·)B)

(C , T)

(UA,αA)

(f∗,αf)

(UB,αB)

180 Chapter 5. Generating Monadic Closures

Proof. We have to show that the monad morphism (UB ◦ f∗, β) : (Sub(A), (·)A) →
(C , T) with the natural transformation

β = T ◦ (UB ◦ f∗)
αB◦f∗=⇒ UB ◦ (·)

B ◦ f∗
UB◦αf
=⇒ (UB ◦ f∗) ◦ (·)

A

given on a subobject mY : Y → A in Sub(A) by the morphism

βmY
: TY

e
Y
B

−→ Y
B φmY−→ Y

A

coincides with the morphism (UA,αA) : (Sub(A), (·)
A
) → (C , T) with (αA)mY

= e
Y

A .

The equality UB◦f∗ = UA is immediate from the involved definitions. The identity

φmY
◦ e

Y
B = e

Y
A follows from the definition of φmY

as unique diagonal.

5.2.5 Closing an Image

In this section we investigate the closure of a particular class of subobjects: the ones

that arise by taking the image of a morphism. We then show that deriving a minimal

bialgebra from a minimal coalgebra by equipping the latter with additional algebraic

structure can be realized as the closure of a subobject in this class.

We assume a category C with a factorisation system (E ,M) and a monad T on

C that preserves E . Suppose that X = (X, hX) is a T -algebra and f : Y → X a

morphism in C . On the one hand, there exists a factorisation of f in C :

f = Y
eim(f)

↠ im(f)
mim(f)

↩→ X.

On the other hand, there exists a factorisation of the lifing f 󰂒 = hX ◦ Tf in the

category of Eilenberg-Moore algebras C T :

f 󰂒 = (TY, µY)
e
im(f󰂒)

↠ (im(f 󰂒), him(f󰂒))
m

im(f󰂒)

↩→ (X, hX).

The next result shows that, up to isomorphism, the closure of the subobject mim(f)

with respect to the algebra X is given by the subobject mim(f󰂒).

Lemma 5.2.5.1. mim(f)
X = mim(f󰂒) in Sub(X).

5.2. Step 1: Closure 181

Proof. Using the factorisation of (mim(f))
󰂒 = hX ◦ Tmim(f) in C T ,

(mim(f))
󰂒 = (T im(f), µim(f))

e
im(f)

↠ (im(f), him(f))
m

im(f)

↩→ (X, hX)

one easily verifies that the diagram below commutes:

(TY, µY) (im(f 󰂒), him(f󰂒))

(T im(f), µim(f)) (TX, µX)

(im(f), him(f)) (X, hX)

e
im(f󰂒)

Teim(f)

Tf

Tmim(f)
e
im(f)

hX

m
im(f)

m
im(f󰂒) .

Since factorisations are unique up to unique isomorphism, there thus exists a unique

isomorphism φ : mim(f󰂒) ≃ mim(f) of subobjects of X as indicated below:

(TY, µY) (im(f 󰂒), him(f󰂒))

(im(f), him(f)) (X, hX)

e
im(f󰂒)

e
im(f)

◦Teim(f)
φ

m
im(f)

m
im(f󰂒) .

Since by definition mim(f)
X ≃ mim(f), this shows the claim.

The next example uses Lemma 5.2.5.1 to show that deriving a minimal bialgebra

from a minimal coalgebra can be realised as the closure of a subobject with respect

to a monad of the type in Theorem 5.2.4.2.

Example 5.2.5.2 (Closure of Minimal Moore Automata). Let F be the set endofunc-

tor with FX = B ×XA, for fixed sets A and B. Let T be a set monad, h : TB → B

a T -algebra structure for B, and let L : A∗ → B be a generalised language.

As F preserves monomorphisms, the canonical epi-mono factorisation system of

the category of sets lifts to the category Coalg(F), which consists of unpointed Moore

automata with input A and output B.

There exists a size-minimal Moore automaton ML that accepts L. It can be

recovered as the epi-mono factorisation of the final F -coalgebra homomorphism obs :

182 Chapter 5. Generating Monadic Closures

A∗ → Ω, that is, ML = mim(obs). In more detail: Ω is carried by BA∗
; obs satisfies

obs(w)(v) = L(wv); and A∗ is equipped with the F -coalgebra structure 〈ε, δ〉 : A∗ →
B × (A∗)A defined by ε(w) = L(w) and δ(w)(a) = wa [63].

The algebra structure h induces a canonical4 distributive law λ between T and F .

One can show that λ-bialgebras are algebras over the monad Tλ on Coalg(F) defined

by Tλ(X, k) = (TX,λX ◦ Tk) and Tλf = Tf [152]. One such Tλ-algebra is the final

F -coalgebra Ω, when equipped with a canonical T -algebra structure [81, Prop. 3].

The functor Tλ preserves epimorphisms in the category Coalg(F), if T preserves

epimorphisms in the category of sets. The latter is the case for every set endofunctor.

By Theorem 5.2.4.2, there thus exists a well-defined monad (·) on Sub(Ω).

By construction, the minimal Moore automaton ML lives in Sub(Ω). Reviewing

the constructions in [161] shows that the minimal λ-bialgebra ML for L is given by the

image of the lifting of obs, that is, ML = mim(obs󰂒). From Lemma 5.2.5.1 it thus follows

ML = ML. Hence the minimal λ-bialgebra for L can be obtained from the minimal

F -coalgebra for L by closing the latter with respect to the Tλ-algebra structure of Ω.

For an example of the monad unit, observe how the minimal coalgebra in Figure 4.3

embeds into the minimal bialgebra in Figure 4.6a.

The situation can be further generalised. We assume that i) C is a category with

an (E ,M)-factorisation system; ii) λ is a distributive law between a monad T on C

that preserves E and an endofunctor F on C that preserves M ; iii) (Ω, hΩ, kΩ) is a

final λ-bialgebra.

Theorem 5.2.5.3. There exists a functor (·) : Sub(Ω, kΩ) → Sub(Ω, hΩ, kΩ) yielding

a monad on Sub(Ω, kΩ) and satisfying mim(obs(X,k))
∼= mim(obsfreeT (X,k)) in Sub(Ω, hΩ, kΩ),

for any F -coalgebra (X, k).

Proof. As F preserves M , the (E ,M)-factorisation system of C lifts to Coalg(F).

The category of λ-bialgebras is isomorphic to the category of algebras over the monad

Tλ on Coalg(F) defined by Tλ(X, k) = (TX,λX◦Tk) and Tλf = Tf [152]. The functor

4Given an algebra h : TB → B for a set monad T , one can define a distributive law λ between
T and F with FX = B × XA by λX := (h × st) ◦ 〈Tπ1, Tπ2〉 : TFX → FTX [75]. (We write
st for the usual strength function st : T (XA) → (TX)A defined by st(U)(a) = T (eva)(U), where
eva(f) = f(a).)

5.3. Step 2: Generators and Bases 183

Tλ preserves the E -part of the lifted factorisation system of Coalg(F), if T preserves

the E -part of the factorisation system of C . In consequence, the factorisation system

of Coalg(F) thus lifts to Bialg(λ). By Proposition 5.2.3.1 and Theorem 5.2.4.2 it fol-

lows that there exists a functor (·) : Sub(Ω, kΩ) → Sub(Ω, hΩ, kΩ) that yields a monad

on Sub(Ω, kΩ). Since (Ω, hΩ, kΩ) is a final λ-bialgebra, (Ω, kΩ) is a final F -coalgebra.

By Lemma 5.2.5.1 we have the equality mim(obs(X,k)) = mim(obs󰂒
(X,k)

) in Sub(Ω, hΩ, kΩ),

where obs󰂒(X,k) = hΩ ◦ Tλ(obs(X,k)) is of type freeT (X, k) = (TX, µX ,λX ◦ Tk) →
(Ω, hΩ, kΩ). By uniqueness it follows obs󰂒(X,k) = obsfreeT (X,k), which proves the claim.

To recover Example 5.2.5.2 as a special case of Theorem 5.2.5.3, one instantiates

the latter for F with FX = B ×XA and the canonical F -coalgebra with carrier A∗.

Finally, using analogous functors to the ones present in (5.2), we observe that, as

a consequence of Lemma 5.2.5.1, the diagram below commutes:

C /X C T/X

Sub(X) Sub(X)(·)X
.

5.3 Step 2: Generators and Bases

One of the central concepts of linear algebra is the notion of a basis for a vector space:

a subset of a vector space is called a basis for the former if every vector can be uniquely

written as a finite linear combination of basis elements. Part of the importance of

bases stems from the convenient consequences that follow from their existence. For

example, linear transformations between vector spaces admit matrix representations

relative to pairs of bases [96], which can be used for efficient calculations. The idea

of a basis however is not restricted to the theory of vector spaces: other algebraic

theories have analogous notions of bases (and generators, by waiving the uniqueness

constraint), for instance modules, semi-lattices, Boolean algebras, convex sets, and

many more. In fact, the theory of bases for vector spaces is special only in the sense

that every vector space admits a basis, which is not the case for e.g. modules.

184 Chapter 5. Generating Monadic Closures

In this section, we use the compact category-theoretical abstraction of generators

and bases given in Definition 4.4.0.1 to lift results from one theory to the others. For

example, one may wonder if there exists a matrix representation theory for convex

sets that is analogous to the one of vector spaces.

5.3.1 Categorification

This section introduces morphisms between algebras with a generator or a basis.

Definition 5.3.1.1. The category GAlg(T) of algebras with a generator over a monad

T is defined as follows:

• Objects are pairs (Xα,α), where Xα = (Xα, hα) is a T -algebra with generator

α = (Yα, iα, dα).

• A morphism (f, p) : (Xα,α) → (Xβ, β) consists of a T -algebra homomorphism

f : Xα → Xβ and a Kleisli-morphism p : Yα → TYβ, such that the diagram

below commutes:

Xα TYα Xα

Xβ TYβ Xβ

dα

f p󰂒

i󰂒α

f

dβ i󰂒β

. (5.6)

Given (f, p) : (Xα,α) → (Xβ, β) and (g, q) : (Xβ, β) → (Xγ, γ), their com-

position is defined componentwise as (g, q) ◦ (f, p) := (g ◦ f, q · p), where

q · p := µYγ ◦ Tq ◦ p denotes the usual Kleisli-composition.

The category BAlg(T) of algebras with a basis is defined as the obvious full subcate-

gory of GAlg(T).

Let F : C T → GAlg(T) be the functor with F (X) := (X, (X, idX , ηX)) and F (f :

X → Y) := (f, ηY ◦ f), and U : GAlg(T) → C T the forgetful functor defined as the

projection on the first component. Then F and U are in an adjoint relation:

Lemma 5.3.1.2. F ⊣ U : GAlg(T) ⇆ C T .

Proof. Since every algebra can be generated by itself, the definition for F is well-

defined on objects. For morphisms, one easily establishes (5.6) from the naturality

5.3. Step 2: Generators and Bases 185

of η, the monad law µY ◦ TηY = idTY , and the commutativity of f with algebra

structures. The compositionality of F follows analogously; preservation of identity is

trivial. For the natural isomorphism

HomGAlg(T)(F (X), (Xα,α)) ≃ HomC T (X, U(Xα,α))

we propose mapping (f, p) to f , and conversely, f to (f, dα ◦ f). The latter is well-

defined since

(dα ◦ f)󰂒 ◦ ηX = dα ◦ f and i󰂒α ◦ (dα ◦ f)󰂒 = i󰂒α ◦ dα ◦ f 󰂒 = f 󰂒 = f ◦ (idX)󰂒.

Composition in one of the directions trivially yields the identity; for the other direction

we note that if (f, p) satisfies (5.6), then p = p󰂒 ◦ ηX = dα ◦ f .

5.3.2 Products

In this section we show that, under certain assumptions, the monoidal product of a

base category naturally extends to a monoidal product of algebras with bases in the

base category. As a natural example we obtain the tensor-product of vector spaces

with fixed bases.

We assume basic familiarity with monoidal categories. A monoidal monad T

on a monoidal category (C ,⊗, I) is a monad which is equipped with natural trans-

formations TX,Y : TX ⊗ TY → T (X ⊗ Y) and T0 : I → TI, satisfying certain

coherence conditions (see e.g. [138]). One can show that, given such additional data,

the monoidal structure of C induces a monoidal category (C T ,⊠, (TI, µI)), if the

following two assumptions are given [138, Corollary 2.5.6]:

(A1) For any two algebras Xα = (Xα, hα) and Xβ = (Xβ, hβ) the coequaliser qXα,Xβ

of the algebra homomorphisms T (hα ⊗ hβ) and µXα⊗Xβ
◦ T (TXα,Xβ

) of type

(T (TXα ⊗ TXβ), µTXα⊗TXβ
) → (T (Xα ⊗ Xβ), µXα⊗Xβ

) exists (we denote its

codomain by Xα ⊠ Xβ := (Xα ⊠Xβ, hα⊠β));

(A2) Left and right-tensoring with the induced functor ⊠ preserves reflexive co-

equaliser.

186 Chapter 5. Generating Monadic Closures

The two monoidal products ⊗ and ⊠ are related via the natural embedding ιXα,Xβ
:=

qXα,Xβ
◦ ηXα⊗Xβ

: Xα ⊗Xβ → Xα ⊠Xβ. One can show that the product (TYα, µYα)⊠
(TYβ, µYβ

) is given by (T (Yα ⊗ Yβ), µYα⊗Yβ
) and the coequaliser q(TYα,µYα),(TYβ ,µYβ

) by

µYα⊗Yβ
◦ T (TYα,Yβ

) [138].

With the previous remarks in mind, we are able to claim the following.

Lemma 5.3.2.1. Let T be a monoidal monad on (C ,⊗, I) such that (A1) and (A2)

are satisfied. Let α = (Yα, iα, dα) and β = (Yβ, iβ, dβ) be generators (bases) for T -

algebras Xα and Xβ. Then α⊠β = (Yα⊗Yβ, ιXα,Xβ
◦(iα⊗ iβ), (dα⊠dβ)) is a generator

(basis) for the T -algebra Xα ⊠ Xβ.

Proof. First, we calculate

hα ⊠ hβ

= (id = µXα⊗Xβ
◦ T (ηXα⊗Xβ

))

(hα ⊠ hβ) ◦ µXα⊗Xβ
◦ T (ηXα⊗Xβ

)

= (qXα,Xβ
= hα ⊠ hβ [138])

qXα,Xβ
◦ µXα⊗Xβ

◦ T (ηXα⊗Xβ
)

= (qXα,Xβ
is algebra homomorphism)

hα⊠β ◦ T (qXα,Xβ
) ◦ T (ηXα⊗Xβ

)

= (Definition of ιXα,Xβ
)

hα⊠β ◦ T (ιXα,Xβ
).

(5.7)

If α and β are generators, it thus follows

hα⊠β ◦ T (ιXα,Xβ
) ◦ T (iα ⊗ iβ) ◦ (dα ⊠ dβ)

= (5.7)

(hα ⊠ hβ) ◦ T (iα ⊗ iβ) ◦ (dα ⊠ dβ)

= (T (f ⊗ g) = Tf ⊠ Tg [138])

(hα ⊠ hβ) ◦ (T (iα)⊠ T (iβ)) ◦ (dα ⊠ dβ)

= (⊠ is functorial)

(hα ◦ T (iα) ◦ dα)⊠ (hβ ◦ T (iβ) ◦ dβ)

5.3. Step 2: Generators and Bases 187

= (α, β are generators)

idXα ⊠ idXβ

= (⊠ is functorial)

idXα⊠Xβ
.

The additional equality for the case in which α and β are bases follows analogously.

Corollary 5.3.2.2. Let T be a monoidal monad on (C ,⊗, I) such that (A1) and (A2)

are satisfied. The definitions (Xα,α)⊠(Xβ, β) := (Xα⊠Xβ,α⊠β) and (f, p)⊠(g, q) :=

(f ⊠ g, TYα′ ,Yβ′ ◦ (p⊗ q)) yield monoidal structures with unit ((TI, µI), (I, ηI , idTI)) on

GAlg(T) and BAlg(T).

Proof. By Lemma 5.3.2.1 the construction is well-defined on objects. That it is

well-defined on morphisms, i.e. the commutativity of (5.6), is a consequence of the

equalities Tf ⊠ Tg = T (f ⊗ g) and qXα,Xβ
= hα ⊠ hβ [138], which imply (TYα,Yβ

◦ (p⊗
q))󰂒 = (µYα′ ⊠ µYβ′) ◦ (Tp⊠ Tq). The natural isomorphisms underlying the monoidal

structure for C T can be extended to morphisms in GAlg(T) by associating canonical

Kleisli-morphisms between generators as in (5.8).

We conclude by instantiating above construction to the setting of vector spaces.

Example 5.3.2.3 (Tensor Product of Vector Spaces). Recall the free K-vector space

monad VK from Examples 2.2.0.8. The category of sets is monoidal (in fact, cartesian)

with respect to the cartesian product × and the singleton set {󰂏}. The monad VK is

monoidal when equipped with the morphisms (VK)X,Y (ϕ,ψ)(x, y) := ϕ(x) · ψ(y) and
(VK)0(󰂏)(󰂏) := 1K [123]. The category of VK-algebras is isomorphic to the category

of K-vector spaces, and satisfies (A1) and (A2). The monoidal structure induced

by VK is the usual tensor product ⊗ of vector spaces with the unit field VK({󰂏}) ≃
K. Lemma 5.3.2.1 captures the well-known fact that the dimension of the tensor

product of two vector spaces equals the product of the dimensions of each vector

space. The structure maps of the product generator map an element (yα, yβ) to the

188 Chapter 5. Generating Monadic Closures

vector i(yα)⊗ i(yβ), and a vector x to the function (dα ⊗ dβ)(x), where

dα ⊗ dβ = dα × dβ : Xα ⊗ Xβ → (VK(Yα), µYα)⊗ (VK(Yβ), µYβ
)

≃ (VK(Yα × Yβ), µYα⊗Yβ
)

is the unique linear extension of the bilinear map defined by

(dα × dβ)(xα, xβ)(yα, yβ) = dα(xα)(yα) · dβ(xβ)(yβ).

5.3.3 Kleisli Representation Theory

In this section we use our category-theoretical definition of a basis to derive a repre-

sentation theory for homomorphisms between algebras over monads that is analogous

to the matrix representation theory for linear transformations between vector spaces.

In more detail, recall that a linear transformation L : V → W between k-vector

spaces with finite bases α = {v1, ..., vn} and β = {w1, ..., wm}, respectively, admits

a matrix representation Lαβ ∈ Matk(m,n) with L(vj) =
󰁓

i(Lαβ)i,jwi, such that for

any vector v in V the coordinate vectors L(v)β ∈ km and vα ∈ kn satisfy the equality

L(v)β = Lαβvα. A great amount of linear algebra is concerned with finding bases

such that the corresponding matrix representation is in an efficient shape, for instance

diagonalised. The following definitions generalise the situation by substituting Kleisli

morphisms for matrices.

Definition 5.3.3.1. Let α = (Yα, iα, dα) and β = (Yβ, iβ, dβ) be bases for T -algebras

Xα = (Xα, hα) and Xβ = (Xβ, hβ), respectively. The basis representation fαβ of a

T -algebra homomorphism f : Xα → Xβ with respect to α and β is defined by

fαβ := Yα
iα−→ Xα

f−→ Xβ

dβ−→ TYβ. (5.8)

Conversely, the morphism pαβ associated with a Kleisli morphism p : Yα → TYβ with

respect to α and β is defined by

pαβ := Xα
dα−→ TYα

Tp−→ T 2Yβ

µYβ−→ TYβ

T iβ−→ TXβ

hβ−→ Xβ. (5.9)

5.3. Step 2: Generators and Bases 189

A = Lα′α′ =

󰀕
0 −1
1 0

󰀖
, Lαα =

󰀕
3 2
−5 −3

󰀖
, P =

󰀕
−1 1
2 −1

󰀖
, P−1 =

󰀕
1 1
2 1

󰀖

Figure 5.2: The basis representation of the counter-clockwise rotation by 90 degree
L : R2 → R2, L(v) = Av with respect to α = {(1, 2), (1, 1)} and α′ = {(1, 0), (0, 1)}
satisfies Lα′α′ = P−1LααP

The morphism associated with a Kleisli morphism should be understood as the

linear transformation between vector spaces induced by some matrix of the right type.

The following result confirms this intuition.

Lemma 5.3.3.2. The function (5.9) is a T -algebra homomorphism pαβ : Xα → Xβ.

Proof. Using Lemma 4.4.0.6 we deduce the commutativity of the following diagram:

TXα T 2Yα T 3Yβ T 2Yβ T 2Xβ TXβ

Xα TYα T 2Yβ TYβ TXβ Xβ

hα

Tdα T 2p

µYα

TµYβ

µTYβ µYβ

T 2iβ Thβ

µXβ hβ

dα Tp µYβ T iβ hβ

.

The next result establishes a generalisation of the observation that for fixed bases,

constructing a matrix representation of a linear transformation on the one hand, and

associating a linear transformation to a matrix of the right type on the other hand,

are mutually inverse operations.

Lemma 5.3.3.3. The operations (5.8) and (5.9) are mutually inverse.

Proof. Essentially, the statement follows from the observation that, for bases, the

functions involved in the composition below are isomorphisms:

HomC T (Xα,Xβ)
(dβ)∗◦(i󰂒α)∗−→ HomC T ((TYα, µYα), (TYβ, µYβ

))

(ηYα)∗−→ HomCT
(Yα, Yβ).

(5.10)

190 Chapter 5. Generating Monadic Closures

More concretely, the definitions imply:

(pαβ)αβ = dβ ◦ (hβ ◦ T iβ ◦ µYβ
◦ Tp ◦ dα) ◦ iα

(fαβ)
αβ = hβ ◦ T iβ ◦ µYβ

◦ T (dβ ◦ f ◦ iα) ◦ dα.

Using Lemma 4.4.0.6 we deduce the commutativity of the diagrams below:

Yα TYβ TYβ

Xα TYα T 2Yβ TYβ TXβ Xβ

iα

p

ηYα
idTYβ

idTYβ

ηTYβ

dα Tp µYβ T iβ hβ

dβ

Xα Xα Xβ Xβ

TXα TXβ T 2Yβ TYβ TXβ

idXα

T iα◦dα

f

dβ

idXβ

hα

Tf Tdβ

hβ

µYβ T iβ

hβ .

At the beginning of this section we recalled the soundness identity L(v)β = Lαβvα

for the matrix representation Lαβ of a linear transformation L. The next result is a

natural generalisation of this statement.

Lemma 5.3.3.4. fαβ is the unique Kleisli-morphism such that fαβ · dα = dβ ◦ f .

Conversely, pαβ is the unique T -algebra homomorphism such that p · dα = dβ ◦ pαβ.

Proof. The definitions imply

fαβ · dα = µYβ
◦ T (dβ ◦ f ◦ iα) ◦ dα.

5.3. Step 2: Generators and Bases 191

Using Lemma 4.4.0.6 we deduce the commutativity of the diagram below:

Xα TYα TXα TXβ T 2Yβ

Xα Xβ TYβ

idXα

dα T iα

hα

Tf

hβ

Tdβ

µYβ

f dβ

.

Since an equality of the type p · dα = dβ ◦ f implies

p = µYβ
◦ ηTYβ

◦ p = µYβ
◦ Tp ◦ ηYα = µYβ

◦ Tp ◦ dα ◦ iα = dβ ◦ f ◦ iα = fαβ,

the morphism fαβ is moreover uniquely determined. For the second part of the claim

we observe that by above and Lemma 5.3.3.3 it holds p·dα = (pαβ)αβ ·dα = dβ◦pαβ, and
that an equality of the type p·dα = dβ◦f implies pαβ = i󰂒β◦(p·dα) = i󰂒β◦dβ◦f = f .

The next result establishes the compositionality of basis representations: the ma-

trix representation of the composition of two linear transformations is given by the

multiplication of the matrix representations of the individual linear transformations.

Lemma 5.3.3.5. gβγ · fαβ = (g ◦ f)αγ.

Proof. The definitions imply

gβγ · fαβ = µYγ ◦ T (dγ ◦ g ◦ iβ) ◦ dβ ◦ f ◦ iα
(g ◦ f)αγ = dγ ◦ (g ◦ f) ◦ iα.

We delete common terms and use Lemma 4.4.0.6 to deduce the commutativity of the

diagram below:

Xβ TYβ TXβ TXγ T 2Yγ

Xβ Xγ TYγ

idXβ

dβ T iβ Tg

hβ

Tdγ

hγ

µYγ

g dγ

.

192 Chapter 5. Generating Monadic Closures

Similarly to the previous result, the next observation captures the compositionality

of the operation that assigns to a Kleisli morphism its associated homomorphism.

Lemma 5.3.3.6. qβγ ◦ pαβ = (q · p)αγ.

Proof. The definitions imply

qβγ ◦ pαβ = (hγ ◦ T iγ ◦ µYγ ◦ Tq ◦ dβ) ◦ (hβ ◦ T iβ ◦ µYβ
◦ Tp ◦ dα)

(q · p)αγ = hγ ◦ T iγ ◦ µYγ ◦ TµYγ ◦ T 2q ◦ Tp ◦ dα.

By deleting common terms and using the equality dβ ◦ hβ ◦ T iβ = idTYβ
it is thus

sufficient to show

µYγ ◦ Tq ◦ µYβ
= µYγ ◦ TµYγ ◦ T 2q.

Above equation follows from the commutativity of the diagram below:

T 2Yβ TYβ T 2Yγ

T 3Yγ T 2Yγ TYγ

T 2q

µYβ Tq

µYγ

µTYγ

TµYγ
µYγ

.

The previous statements may be summarised as functors between the following

two categories, which arise from the usual Eilenberg-Moore and Kleisli categories.

Definition 5.3.3.7 (AlgB(T) and KlB(T)). Let AlgB(T) be the category defined as

follows:

• objects are given by pairs (Xα,α), where Xα is a T -algebra with basis α =

(Yα, iα, dα); and

• a morphism f : (Xα,α) → (Xβ, β) consists of a T -algebra homomorphism f :

Xα → Xβ.

Similarly, let KlB(T) be the category defined as follows:

5.3. Step 2: Generators and Bases 193

• objects are given by pairs (Xα,α), where Xα is a T -algebra with basis α =

(Yα, iα, dα); and

• a morphism p : (Xα,α) → (Xβ, β) consists of a morphism p : Yα → TYβ; the

composition is given by the usual Kleisli-composition.

Corollary 5.3.3.8. There exist the following isomorphisms of categories:

BAlg(T) ≃ AlgB(T) ≃ KlB(T).

Proof. For the first isomorphism we define a functor F : BAlg(T) → AlgB(T) by

F (Xα,α) = (Xα,α) and F (f, p) = f ; and a functor G : AlgB(T) → BAlg(T)

by G(Xα,α) = (Xα,α) and G(f) := (f, fαβ). The functoriality of G is a conse-

quence of Lemma 5.3.3.5. The mutual invertibility of F and G is a consequence of

Lemma 5.3.3.4. For the second isomorphism we define a functor F : AlgB(T) →
KlB(T) by F (Xα,α) = (Xα,α) and Ff = fαβ; and a functor G : KlB(T) → AlgB(T)

by G(Xα,α) = (Xα,α) and Gp = pαβ. The functoriality of F and G is a consequence

of Lemma 5.3.3.5 and Lemma 5.3.3.6, respectively. Their mutual invertibility is a

consequence Lemma 5.3.3.3.

Assume we are given bases α,α′ and β, β′ for T -algebras (Xα, hα) and (Xβ, hβ),

respectively. The following result clarifies how the two basis representations fαβ and

fα′β′ are related.

Proposition 5.3.3.9. There exist Kleisli isomorphisms p and q such that fα′β′ =

q · fαβ · p.

Proof. The Kleisli morphisms p and q and their respective candidates for inverses p−1

and q−1 are defined below

p := dα ◦ iα′ : Yα′ −→ TYα q := dβ′ ◦ iβ : Yβ −→ TYβ′

p−1 := dα′ ◦ iα : Yα −→ TYα′ q−1 := dβ ◦ iβ′ : Yβ′ −→ TYβ.

194 Chapter 5. Generating Monadic Closures

From Lemma 4.4.0.6 it follows that the diagram below commutes:

Yα Xα TYα′

Xα

TYα T 2Yα TXα

iα

ηYα

idXα

dα′

T iα′

dα

µYα

hα

Tdα

.

This shows that p−1 is a Kleisli right-inverse of p. A symmetric version of above

diagram shows that p−1 is also a Kleisli left-inverse of p. Analogously it follows that

q−1 is a Kleisli inverse of q.

The definitions further imply the equalities

q · fαβ · p = µYβ′ ◦ T (dβ′ ◦ iβ) ◦ µYβ
◦ T (dβ ◦ f ◦ iα) ◦ dα ◦ iα′

fα′β′ = dβ′ ◦ f ◦ iα′ .

We delete common terms and use Lemma 4.4.0.6 to establish the commutativity of

the diagram below:

Xα TYα TXα TXβ

Xα T 2Yβ

Xβ Xβ

TYβ′ T 2Yβ′ TXβ TYβ

idXα

dα

f

T iα

hα

Tf

hβ

Tdβ

f

µYβ

dβ′

idXβ

dβ

µYβ′

hβ

Tdβ′ T iβ

.

Above result simplifies if one restricts to an endomorphism: the basis representa-

tions are similar. This generalises the situation for vector spaces, cf. Figure 5.2.

5.3. Step 2: Generators and Bases 195

Corollary 5.3.3.10. There exists a Kleisli isomorphism p with Kleisli inverse p−1

such that fα′α′ = p−1 · fαα · p.

Proof. In Proposition 5.3.3.9 let β = α and β′ = α′. One verifies that in the corre-

sponding proof the definitions of the morphisms p−1 and q coincide.

5.3.4 Bases for Bialgebras

This subsection is concerned with generators and bases for a bialgebra. It is well-

known [152] that an Eilenberg-Moore law λ between a monad T and an endofunctor

F induces simultaneously

• a monad Tλ = (Tλ, µ, η) on Coalg(F) by Tλ(X, k) = (TX,λX ◦ Tk) and Tλf =

Tf ; and

• an endofunctor Fλ on C T by Fλ(X, h) = (FX,Fh ◦ λX) and Fλf = Ff ,

such that the algebras over Tλ, the coalgebras of Fλ, and λ-bialgebras coincide. We

will consider generators and bases for Tλ-algebras, or equivalently, λ-bialgebras.

By Definition 4.4.0.1, a generator for a λ-bialgebra (X, h, k) consists of an F -

coalgebra (Y, kY) and morphisms i : Y → X and d : X → TY , such that the three

diagrams on the left below commute:

Y X

FY FX

i

kY k

F i

X TY

FX FTY

d

k λY ◦TkY

Fd

TY TX

X X

T i

hd

idX

TX X

TY TY

h

dT i

idTY

. (5.11)

A basis for a λ-bialgebra is a generator, such that in addition the diagram on the

right above commutes.

It is easy to verify that by forgetting the F -coalgebra structure, every generator

for a bialgebra in particular provides a generator for its underlying T -algebra. By

Proposition 4.4.0.5 it thus follows that there exists a λ-bialgebra homomorphism

i󰂒 : exp(Y, Fd ◦ k ◦ i) → (X, h, k). The next result establishes that there exists a

second equivalent free bialgebra with a different coalgebra structure.

196 Chapter 5. Generating Monadic Closures

Lemma 5.3.4.1. Let (Y, kY , i, d) be a generator for (X, h, k). Then i󰂒 : TY → X is

a λ-bialgebra homomorphism i󰂒 : freeT (Y, kY) → (X, h, k).

Proof. By definition we have freeT (Y, kY) = (TY, µY ,λY ◦ TkY). Clearly the lifting

i󰂒 = h◦T i is a T -algebra homomorphism i󰂒 : (TY, µY) → (X, h). It is an F -coalgebra

homomorphism i󰂒 : (TY,λY ◦ TkY) → (X, k) since the diagram below commutes:

TY TX X

TFY TFX

FTY FTX FX

T i

TkY

h

Tk

k
TFi

λY λX

FTi Fh

.

If one moves from generators to bases for bialgebras, both structures coincide.

Lemma 5.3.4.2. Let (Y, kY , i, d) be a basis for (X, h, k), then freeT (Y, kY) = expT (Y, Fd◦
k ◦ i).

Proof. Using Lemma 4.4.0.6 we establish the commutativity of the diagram below:

TY TFY FTY FTY

FTX FX

TY TX TFX TFTY FT 2Y FTY

idTY

TkY λY

TFi

FT i

idFTY

idFTY

FTd

Fh

Fd

T i Tk TFd λTY FµY

.

Example 5.3.4.3 (Canonical RFSA). In Example 4.4.0.9 we considered the gener-

ator (J(L), i, d) with i(y) = y and d(x) = {y ∈ J(L) | y ≤ x} for the underlying

algebraic part of the minimal pointed bialgebra (X, h, k) to recover the canonical

RFSA for L = (a + b)∗a as the coalgebra Fd ◦ k ◦ i. Figure 4.6 shows that the coal-

gebraic part k restricts to the join-irreducibles J(L), suggesting α = (J(L), k, i, d)

5.3. Step 2: Generators and Bases 197

as a possible generator for the full bialgebra. However, as one easily verifies, the

a-action on [{y}] implies the non-commutativity of the second diagram on the left of

(5.11). The issue can be fixed by modifying the definition of d by d([{y}]) := {[{y}]}.
In consequence freeP(J(L)), k) and expP(J(L), Fd ◦ k ◦ i) coincide (even though the

modification does not yield a basis).

We close this section by observing that a basis for the underlying algebra of a

bialgebra is sufficient for constructing a generator for the full bialgebra.

Lemma 5.3.4.4. Let (X, h, k) be a λ-bialgebra and (Y, i, d) a basis for the T -algebra

(X, h). Then (TY, FµY ◦λTY ◦T (Fd◦k◦i), h◦T i, ηTY ◦d) is a generator for (X, h, k).

Proof. In the following we abbreviate kTY := FµY ◦λTY ◦T (Fd◦k ◦ i) : TY → FTY .

By Proposition 4.4.0.5 the lifting h ◦ T i is an F -coalgebra homomorphism h ◦ T i :

(TY, kTY) → (X, k). This shows the commutativity of the diagram on the left of

(5.11). By Proposition 4.4.0.8 the morphism d is an F -coalgebra homomorphism in

the reverse direction. Together with the commutativity of the diagram on the left

below this implies the commutativity of the second diagram to the left of (5.11):

TY T 2Y

TFTY

FTY FT 2Y

ηTY

kTY

TkTY

λTY
ηFTY

FηTY

T 2Y T 2X TX

TY TX TX

X X

T 2i Th

µX

h

ηTY

T i

ηTX

idTX

h
d

idX

.

Similarly, the commutativity of third diagram to the left of (5.11) follows from the

commutativity of the diagram on the right above.

5.3.5 Bases as Coalgebras

In this section, we compare our approach with an alternative, coalgebraic, perspective

on the generalisation of bases. More specifically, we are interested in the work of

Jacobs [77], where a basis for an algebra over a monad is defined as a coalgebra for

the comonad on the category of Eilenberg-Moore algebras induced by the free algebra

198 Chapter 5. Generating Monadic Closures

adjunction. Explicitly, a basis for a T -algebra (X, h), in the sense of [77], consists of

a T -coalgebra (X, k) such that the following three diagrams commute:

TX T 2X

X TX

h

Tk

µX

k

X TX

X

idX

k

h

X TX

TX T 2X

k

k

TηX

Tk

. (5.12)

Next we show that a basis as in Definition 4.4.0.1 induces a basis as in [77].

Lemma 5.3.5.1. Let (Y, i, d) be a basis for a T -algebra (X, h). Then (5.12) commutes

for k := T i ◦ d.

Proof. The commutativity of the diagram on the left of (5.12) follows from the natu-

rality of µ and Lemma 4.4.0.6. The diagram in the middle of (5.12) commutes by the

definition of a generator. The commutativity of the diagram on the right of (5.12) is

again a consequence of Lemma 4.4.0.6:

X TY TX

TY

TX T 2Y T 2X

d

d

T i

TηX

idTY

T i
TηY

Td T 2i

.

Conversely, assume (X, k) is a T -coalgebra structure satisfying (5.12) and ik :

Yk → X an equaliser of k and ηX . If the underlying category is the category of sets

and functions, the equaliser of any two functions exists. If Yk is non-empty, one can

show that the equaliser is preserved under T , that is, T ik is an equaliser of Tk and

TηX [77]. By (5.12) we have Tk ◦ k = TηX ◦ k. Thus there exists a unique morphism

dk : X → TYk such that T ik ◦ dk = k, which can be shown to be the inverse of

h◦T ik [77]. In other words, G(X, k) := (Yk, ik, dk) is a basis for (X, h) in the sense of

Definition 4.4.0.1. In the following let F (Y, i, d) := (X, T i ◦ d) for any basis of (X, h).

Lemma 5.3.5.2. Let (Y, i, d) be a basis for a T -algebra (X, h) and k := T i ◦ d. Then
ηX ◦ i = k ◦ i and Tk ◦ (ηX ◦ i) = TηX ◦ (ηX ◦ i).

5.3. Step 2: Generators and Bases 199

Proof. The statement follows from Lemma 4.4.0.6:

Y X

X TY TX

i

i
ηY

ηX

d T i

Y X TX T 2Y

TY

X TX T 2X

i

i

ηY
d

ηX Td

T 2i

T i

ηTY

ηX

TηX◦ηX

ηTX

.

Corollary 5.3.5.3. Let α := (Y, i, d) be a basis for a set-based T -algebra (X, h) and

k := T i ◦ d. Let ik : Yk → X be an equaliser of k and ηX , and Yk non-empty,

then (id(X,h))α,GFα : Y → TYk is the unique morphism ψ making the diagram below

commute:

Y TYk TX T 2X
ψ

ηX◦i

T ik

Tk

TηX

.

Proof. Since ik is an equaliser of k and ηX , it follows from Lemma 5.3.5.2 that there

exists a unique morphism ϕ : Y → Yk such that ik ◦ϕ = i. Since Yk is non-empty, T ik

is an equaliser of Tk and TηX [77]. It follows from Lemma 5.3.5.2 that there exists a

unique morphism ψ : Y → TYk such that T ik ◦ ψ = ηX ◦ i. It is not hard to see that

ψ = ηYk
◦ ϕ. The statement thus follows from (id(X,h))α,GFα = dk ◦ i = dk ◦ ik ◦ ϕ =

ηYk
◦ ϕ = ψ.

5.3.6 Signatures, Equations, and Finitary Monads

Most of the algebras over set monads one usually considers generators for constitute

finitary varieties in the sense of universal algebra. In this section, we will briefly

explore the consequences for generators that arise from this observation. The con-

structions are well-known; we include them for completeness.

Let Σ be a set, whose elements we think of as operations, and ar : Σ → N a function

that assigns to an operation its arity. Any such signature induces a set endofunctor

200 Chapter 5. Generating Monadic Closures

HΣ defined on a set as the coproduct HΣX =
󰁣

σ∈Σ Xar(σ), and consequently, a set

monad SΣ that assigns to a set V of variables the initial algebra SΣV = µX.(V +

HΣX), i.e. the set of Σ-terms generated by V (see e.g. [151]). One can show that the

categories of HΣ-algebras and SΣ-algebras are isomorphic. A SΣ-algebra X satisfies

a set of equations E ⊆ SΣV × SΣV , if for all (s, t) ∈ E and valuations v : V → X

it holds v󰂒(s) = v󰂒(t), where v󰂒 : (SΣV, µV) → X is the unique extension of v to

a SΣ-algebra homomorphism [5]. The set of SΣ-algebras that satisfy E is denoted

by Alg(Σ, E). As one verifies, the forgetful functor U : Alg(Σ, E) → Set admits a

left-adjoint F : Set → Alg(Σ, E), thus resulting in a set monad TΣ,E with underlying

endofunctor U ◦F that preserves directed colimits. The functor U can be shown to be

monadic, that is, the comparison functor K : Alg(Σ, E) → SetTΣ,E is an isomorphism

[105]. In other words, the category of Eilenberg-Moore algebras over TΣ,E and the

finitary variety of algebras over Σ and E coincide. In fact, set monads preserving

directed colimits (finitary monads [5]) and finitary varieties are in bijection.

The following result characterises generators for algebras over TΣ,E. It can be seen

as a unifying proof for observations analogous to the one in Example 4.4.0.2. For any

Σ-term t ∈ SΣV over variables V , let 󰌻t󰌼E ∈ SΣV/∼=E denote the equivalence class of

t w.r.t. the smallest congruence relation ∼=E on SΣV generated by the equations E.

Lemma 5.3.6.1. A morphism i : Y → X is part of a generator for a TΣ,E-algebra

X iff every element x ∈ X can be expressed as a Σ-term in i[Y] modulo E, that is,

there is a term d(x) ∈ SΣY such that i󰂒(󰌻d(x)󰌼E) = x.

Proof. Let i : Y → X be part of a generator (Y, i, d) for a TΣ,E-algebra X. Then any

x ∈ X admits some d(x) ∈ TΣ,EY such that i󰂒(d(x)) = x, where i󰂒 : (TΣ,EY, µY) → X.
By construction TΣ,EY = UFY , where FY = SΣY/∼=E is the set of Σ-terms generated

by Y modulo the smallest congruence ∼=E generated by E. Let d(x) ∈ SΣY be any

representative of d(x) ∈ TΣ,EY , that is, such that 󰌻d(x)󰌼E = d(x). Then it follows

i󰂒(󰌻d(x)󰌼E) = i󰂒(d(x)) = x.

Conversely, assume we have a TΣ,E-algebra X and for any x ∈ X there exists a term

d(x) ∈ SΣY such that i󰂒(󰌻d(x)󰌼E) = x. Then we can define a function d : X → TΣ,EY

by d(x) = 󰌻d(x)󰌼E. It immediately follows i󰂒(d(x)) = i󰂒(󰌻d(x)󰌼E) = x, which shows

that (Y, i, d) is a generator for X.

5.3. Step 2: Generators and Bases 201

5.3.7 Finitely Generated Objects

In this section, we relate our abstract definition of a generator to the theory of locally

finitely presentable categories, in particular, to the notions of finitely generated and

finitely presentable objects, which are categorical abstractions of finitely generated

algebraic structures.

For intuition, recall that an element x ∈ X of a partially ordered set is compact, if

for each directed set D ⊆ X with x ≤
󰁚

D, there exists some d ∈ D satisfying x ≤ d.

An algebraic lattice is a partially ordered set that has all joins, and every element is a

join of compact elements. The naive categorification of compact elements is equivalent

to the following definition: a object Y in C is finitely presentable (generated), if

HomC (Y,−) : C → Set preserves filtered colimits (of monomorphisms). Consequently,

one can categorify algebraic lattices as locally finitely presentable (lfp) categories,

which are cocomplete and admit a set of finitely presentable objects, such that every

object is a filtered colimit of objects from that set [5].

In [7, Theor. 3.5] it is shown that an algebra X over a finitary monad T on an lfp

category C is a finitely generated object of C T iff there exists a finitely presentable

object Y of C and a morphism i : Y → X, such that i󰂒 : (TY, µY) → X is a strong5

epimorphism in C T . Below, we give a variant of this statement where instead the

carrier of i󰂒 is a split6 epimorphism in C , which is the case iff X admits a generator

in the sense of Definition 4.4.0.1.

Proposition 5.3.7.1. Let C be a lfp category in which strong epimorphisms split and

T a finitary monad on C preserving epimorphisms. Then an algebra X over T is a

finitely generated object of C T iff it is generated by a finitely presentable object Y in

C in the sense of Definition 4.4.0.1.

Proof. Assume that an algebra X over T is a finitely generated object of C T . From

[7, Theor. 3.5] it follows that there exists a finitely presentable object Y of C and a

morphism i : Y → X such that i󰂒 : (TY, µY) → X is a strong epimorphism in C T .

5An epimorphism e : A → B is said to be strong, if for any monomorphism m : C → D and any
morphisms f : A → C and g : B → D such that g ◦e = m◦f , there exists a diagonal monomorphism
d : B → C such that f = d ◦ e and g = m ◦ d.

6A morphism e : A → B is called split, if there exists a morphism s : B → A such that e◦s = idB .
Any morphism that is split is necessarily a strong epimorphism.

202 Chapter 5. Generating Monadic Closures

Since T preserves epis, it is sound to assume that the carrier i󰂒 : TY → X is a strong

epimorphism in C . (This is because the proof of [7, Theor. 3.5] can be modified

by replacing the (strong-epi, mono)-factorisation system of the lfp category C T (cf.

[7, Remark 2.2.1] and [7, Remark 3.1]) with the factorisation system for C T induced

by lifting the (strong-epi, mono)-factorisation system of C . The lifted factorisation

system (cf. Section 5.2.2) consists of those algebra homomorphisms whose carrier is

a strong-epi- or monomorphism in C , respectively.) By assumption, i󰂒 : TY → X

thus splits in C , that is, there exists at least one morphism d : X → TY in C

such that i󰂒 ◦ d = idX . This shows that (Y, i, d) is a generator for X in the sense of

Definition 4.4.0.1.

Conversely, assume that an algebra X over T is generated by (Y, i, d), where Y

is a finitely presentable object in C . Then d witnesses that i󰂒 : TY → X splits in

C . Since every split epimorphism is necessarily strong, i󰂒 : TY → X thus is a strong

epimorphism in C . It immediately follows that i󰂒 : (TY, µY) → X is an epimorphism

in C T . Since T preserves epis, it also is a strong epimorphism in C T . From [7, Theor.

3.5] it follows that the algebra X over T is a finitely generated object of C T .

5.4 Related Work

One of the motivations for this chapter has been our broad interest in active learning

algorithms for state-based models [14], in particular automata for NetKAT [12], a

formal system for the verification of networks based on Kleene Algebra with Tests

[92]. One of the main challenges in learning non-deterministic models such as NetKAT

automata is the common lack of a unique minimal acceptor for a given language

[49]. The problem has been independently approached for different variants of non-

determinism, often with the common idea of finding a subclass admitting a unique

representative [53, 28]. More general and unifying perspectives were given by van

Heerdt [66, 63, 64] and Myers et al. [119]. One of the central notions in the work of

van Heerdt is the concept of a scoop, originally introduced by Arbib and Manes [19].

In Chapter 4 we have presented a categorical framework that recovers minimal

non-deterministic representatives in two steps. The framework is based on ideas

closely related to the ones in [119], adopts scoops under the name generators and

5.5. Discussion and Future Work 203

strengthens the former to the notion of a basis (Definition 4.4.0.1). In a first step, the

framework constructs the minimal bialgebra accepting a given regular language, by

closing the minimal coalgebra with additional algebraic structure over a monad. In a

second step, it identifies generators for the algebraic part of the bialgebra, to derive an

equivalent coalgebra with side effects in a monad. In this chapter, we generalise the

first step as application of a monad on an appropriate category of subobjects with

respect to an (E ,M)-factorisation system, and explore the second step by further

developing the abstract theory of generators and bases.

Categorical factorisation systems are well-established [36, 129, 106]. Among oth-

ers, they have been used for a general view on the minimisation and determinisation

of state-based systems [4, 6, 158]. In Section 5.2 we use the formalism of [4]. In

Section 5.2.2 we have shown that under certain assumptions factorisation systems

can be lifted to the categories of algebras and coalgebras. We later realised that the

constructions had recently been published in [158].

The notion of a basis for an algebra over an arbitrary monad has been subject of

previous interest. Jacobs, for instance, defines a basis as a coalgebra for the comonad

on the category of algebras induced by the free algebra adjunction [77]. In Sec-

tion 5.3.5 we have shown that a basis in our sense always induces a basis in their

sense, and, conversely, it is possible to recover a basis in our sense from a basis in

their sense, if certain assumptions about the existence and preservation of equaliser

are given. As equaliser do not necessarily exist and are not necessarily preserved, our

approach carries additional data and thus can be seen as finer.

5.5 Discussion and Future Work

We generalised the closure of a subset of an algebraic structure with respect to the

latter as a monad between categories of subobjects relative to a factorisation system.

We have identified the closure of a minimal coalgebra with additional algebraic struc-

ture as an instance of the closure of subobjects that arise by taking the image of a

morphism. We have extended the notion of a generator to a category of algebras with

generators, and explored its characteristics. We have generalised the matrix represen-

tation theory of vector spaces and discussed bases for bialgebras. We compared our

204 Chapter 5. Generating Monadic Closures

ideas with a coalgebraic generalisation of bases, explored the case in which a monad

is induced by a variety, and briefly related our notion to finitely generated objects in

finitely presentable categories.

In Chapter 4 we have shown that generators and bases in the sense of Section 5.3

are central ingredients in the definitions of minimal canonical acceptors. Many such

acceptors admit double-reversal characterisations [38, 39, 119, 156]. Duality based

characterisations as the former have been shown to be closely related to minimisation

procedures with respect to factorisation systems [34, 33, 158]. In the future, it would

be interesting to further explore the connection between the minimality of genera-

tors on the one side, and the notion of minimality of an acceptor with respect to a

factorisation system on the other side.

Another interesting question is whether the construction that underlies our defi-

nition of a monad in Theorem 5.2.4.2 could be introduced at a more general level of

an arbitrary adjunction between categories with suitable factorisation systems, such

that the adjunction between the base category C and the category of Eilenberg-Moore

algebras C T is a special case.

Overall, our presentation primarily focused on applications to coalgebra. It would

be valuable to also explore possible implications to other fields, for instance the min-

imisation of logical formulae or proofs.

Bibliography

[1] Fides Aarts and Frits Vaandrager. “Learning I/O Automata”. In: International

Conference on Concurrency Theory. Springer. 2010, pp. 71–85. doi: 10.1007/

978-3-642-15375-4_6.

[2] Fides Aarts, Falk Howar, Harco Kuppens, and Frits Vaandrager. “Algorithms

for Inferring Register Automata”. In: International Symposium On Leveraging

Applications of Formal Methods, Verification and Validation. Springer. 2014,

pp. 202–219. doi: 10.1007/978-3-662-45234-9_15.

[3] Fides Aarts, Paul Fiterau-Brostean, Harco Kuppens, and Frits Vaandrager.

“Learning Register Automata with Fresh Value Generation”. In: International

Colloquium on Theoretical Aspects of Computing. Springer. 2015, pp. 165–183.

doi: 10.1007/978-3-319-25150-9_11.

[4] Jiri Adamek, Horst Herrlich, and George E Strecker. “Abstract and Concrete

Categories: The Joy of Cats”. In: Reprints in Theory and Applications of Cat-

egories (2009).

[5] Jiri Adamek and Jiri Rosicky. Locally Presentable and Accessible Categories.

Vol. 189. Cambridge University Press, 1994. doi: 10.1017/CBO9780511600579.

[6] Jiri Adamek, Filippo Bonchi, Mathias Hülsbusch, Barbara König, Stefan Mil-

ius, and Alexandra Silva. “A Coalgebraic Perspective on Minimization and

Determinization”. In: International Conference on Foundations of Software

Science and Computational Structures. Springer. 2012, pp. 58–73. doi: 10.

1007/978-3-642-28729-9_4.

205

https://doi.org/10.1007/978-3-642-15375-4_6
https://doi.org/10.1007/978-3-662-45234-9_15
https://doi.org/10.1007/978-3-319-25150-9_11
https://doi.org/10.1017/CBO9780511600579
https://doi.org/10.1007/978-3-642-28729-9_4

206 Bibliography

[7] Jiri Adamek, Stefan Milius, Lurdes Sousa, and Thorsten Wißmann. “Finitely

Presentable Algebras For Finitary Monads”. In: Theory and Applications of

Categories 34.37 (2019), pp. 1179–1195.

[8] Jürgen Albert and Jarkko Kari. “Digital Image Compression”. In: Handbook

of Weighted Automata. Springer, 2009, pp. 453–479. doi: 10.1007/978-3-

642-01492-5_11.

[9] Cyril Allauzen, Mehryar Mohri, and Ameet Talwalkar. “Sequence Kernels

for Predicting Protein Essentiality”. In: Proceedings of the 25th International

Conference on Machine Learning. 2008, pp. 9–16. doi: 10.1145/1390156.

1390158.

[10] Bowen Alpern and Fred B Schneider. “Recognizing Safety and Liveness”. In:

Distributed Computing 2.3 (1987), pp. 117–126. doi: 10.1007/BF01782772.

[11] Benjamin Aminof, Orna Kupferman, and Robby Lampert. “Formal Analysis

of Online Algorithms”. In: International Symposium on Automated Technology

for Verification and Analysis. Springer. 2011, pp. 213–227. doi: 10.1007/978-

3-642-24372-1_16.

[12] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin,

Dexter Kozen, Cole Schlesinger, and David Walker. “NetKAT: Semantic Foun-

dations for Networks”. In: ACM SIGPLAN Notices 49.1 (2014), pp. 113–126.

doi: 10.1145/2578855.2535862.

[13] Dana Angluin. “A Note on the Number of Queries Needed to Identify Regular

Languages”. In: Information and Control 51.1 (1981), pp. 76–87. doi: 10.

1016/S0019-9958(81)90090-5.

[14] Dana Angluin. “Learning Regular Sets from Queries and Counterexamples”.

In: Information and Computation 75.2 (1987), pp. 87–106. doi: 10.1016/

0890-5401(87)90052-6.

[15] Dana Angluin. “Queries and Concept Learning”. In: Machine Learning 2.4

(1988), pp. 319–342. doi: 10.1023/A:1022821128753.

https://doi.org/10.1007/978-3-642-01492-5_11
https://doi.org/10.1145/1390156.1390158
https://doi.org/10.1007/BF01782772
https://doi.org/10.1007/978-3-642-24372-1_16
https://doi.org/10.1145/2578855.2535862
https://doi.org/10.1016/S0019-9958(81)90090-5
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1023/A:1022821128753

Bibliography 207

[16] Dana Angluin and Miklós Csundefinedrös. “Learning Markov Chains with

Variable Memory Length from Noisy Output”. In: Proceedings of the Tenth

Annual Conference on Computational Learning Theory. Association for Com-

puting Machinery, 1997, pp. 298–308. doi: 10.1145/267460.267517.

[17] Dana Angluin, Sarah Eisenstat, and Dana Fisman. “Learning Regular Lan-

guages via Alternating Automata”. In: Proceedings of the 24th International

Conference on Artificial Intelligence. IJCAI’15. 2015, pp. 3308–3314.

[18] Dana Angluin and Dana Fisman. “Learning Regular Omega Languages”. In:

Theoretical Computer Science 650 (2016), pp. 57–72. doi: 10.1016/j.tcs.

2016.07.031.

[19] Michael A Arbib and Ernest G Manes. “Fuzzy Machines in a Category”. In:

Bulletin of the Australian Mathematical Society 13.2 (1975), pp. 169–210. doi:

10.1017/S0004972700024412.

[20] André Arnold, Anne Dicky, and Maurice Nivat. “A Note About Minimal Non-

Deterministic Automata”. In: Bulletin of the EATCS 47 (1992), pp. 166–169.

[21] Steve Awodey. Category Theory. Oxford University Press, Inc., 2010.

[22] Borja Balle and Mehryar Mohri. “Learning Weighted Automata”. In: Inter-

national Conference on Algebraic Informatics. Springer. 2015, pp. 1–21. doi:

10.1007/978-3-319-23021-4_1.

[23] Borja Balle and Mehryar Mohri. “Spectral Learning of General Weighted Au-

tomata via Constrained Matrix Completion”. In: Advances in Neural Infor-

mation Processing Systems. Ed. by F. Pereira, C.J. Burges, L. Bottou, and

K.Q. Weinberger. Vol. 25. Curran Associates, Inc., 2012.

[24] Alexandru Baltag. “A Logic for Coalgebraic Simulation”. In: Electronic Notes

in Theoretical Computer Science 33 (2000), pp. 42–60. doi: 10.1016/S1571-

0661(05)80343-3.

[25] Jon Beck. “Distributive Laws”. In: Seminar on Triples and Categorical Ho-

mology Theory. Springer. 1969, pp. 119–140. doi: 10.1007/BFb0083084.

https://doi.org/10.1145/267460.267517
https://doi.org/10.1016/j.tcs.2016.07.031
https://doi.org/10.1017/S0004972700024412
https://doi.org/10.1007/978-3-319-23021-4_1
https://doi.org/10.1016/S1571-0661(05)80343-3
https://doi.org/10.1007/BFb0083084

208 Bibliography

[26] Francesco Bergadano and Stefano Varricchio. “Learning Behaviors of Au-

tomata from Multiplicity and Equivalence Queries”. In: Algorithms and Com-

plexity. Springer, 1994, pp. 54–62. doi: 10.1007/3-540-57811-0_6.

[27] Francesco Bergadano and Stefano Varricchio. “Learning Behaviors of Au-

tomata from Multiplicity and Equivalence Queries”. In: SIAM Journal on

Computing 25.6 (1996), pp. 1268–1280. doi: 10.1137/S009753979326091X.

[28] Sebastian Berndt, Maciej Lískiewicz, Matthias Lutter, and Rüdiger Reischuk.

“Learning Residual Alternating Automata”. In: Thirty-First AAAI Conference

on Artificial Intelligence. 2017. doi: 10.1609/aaai.v31i1.10891.

[29] Garrett Birkhoff. “On the Structure of Abstract Algebras”. In: Mathematical

Proceedings of the Cambridge Philosophical Society. Vol. 31. 4. Cambridge

University Press. 1935, pp. 433–454.

[30] Benedikt Bollig, Peter Habermehl, Martin Leucker, and Benjamin Monmege.

“A Fresh Approach to Learning Register Automata”. In: International Con-

ference on Developments in Language Theory. Springer. 2013, pp. 118–130.

doi: 10.1007/978-3-642-38771-5_12.

[31] Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker. “Angluin-

Style Learning of NFA”. In: Proceedings of the 21st International Joint Con-

ference on Artificial Intelligence. IJCAI’09. 2009, 1004–1009.

[32] Filippo Bonchi and Damien Pous. “Checking NFA Equivalence With Bisimu-

lations up to Congruence”. In: ACM SIGPLAN Notices 48.1 (2013), pp. 457–

468.

[33] Filippo Bonchi, Marcello M Bonsangue, Helle H Hansen, Prakash Panan-

gaden, Jan Rutten, and Alexandra Silva. “Algebra-Coalgebra Duality in Brzo-

zowski’s Minimization Algorithm”. In: ACM Transactions on Computational

Logic (TOCL) 15.1 (2014), pp. 1–29. doi: 10.1145/2490818.

[34] Filippo Bonchi, Marcello M Bonsangue, Jan Rutten, and Alexandra Silva.

“Brzozowski’s Algorithm (Co)Algebraically”. In: Logic and Program Seman-

tics. Springer, 2012, pp. 12–23. doi: 10.1007/978-3-642-29485-3_2.

https://doi.org/10.1007/3-540-57811-0_6
https://doi.org/10.1137/S009753979326091X
https://doi.org/10.1609/aaai.v31i1.10891
https://doi.org/10.1007/978-3-642-38771-5_12
https://doi.org/10.1145/2490818
https://doi.org/10.1007/978-3-642-29485-3_2

Bibliography 209

[35] Marcello M Bonsangue, Helle Hvid Hansen, Alexander Kurz, and Jurriaan Rot.

“Presenting Distributive Laws”. In: International Conference on Algebra and

Coalgebra in Computer Science. Springer. 2013, pp. 95–109. doi: 10.1007/

978-3-642-40206-7_9.

[36] Aldridge K Bousfield. “Constructions of Factorization Systems in Categories”.

In: Journal of Pure and Applied Algebra 9.2-3 (1977), pp. 207–220. doi: 10.

1016/0022-4049(77)90067-6.

[37] Thomas M Breuel. “The OCRopus open source OCR system”. In: Document

Recognition and Retrieval XV. Vol. 6815. International Society for Optics and

Photonics. SPIE, 2008, pp. 120–134. doi: 10.1117/12.783598.

[38] Janusz A Brzozowski. “Canonical Regular Expressions and Minimal State

Graphs for Definite Events”. In: Proc. Symposium of Mathematical Theory

of Automata. Vol. 12. 1962, pp. 529–561.

[39] Janusz A. Brzozowski and Hellis Tamm. “Theory of Átomata”. In: Theor.

Comput. Sci. 539 (2014), pp. 13–27. doi: 10.1016/j.tcs.2014.04.016.

[40] Hugues Calbrix, Maurice Nivat, and Andreas Podelski. “Ultimately Periodic

Words of Rational ω-Languages”. In: International Conference on Mathemati-

cal Foundations of Programming Semantics. Springer. 1993, pp. 554–566. doi:

10.1007/3-540-58027-1_27.

[41] Sofia Cassel, Falk Howar, Bengt Jonsson, and Bernhard Steffen. “Active Learn-

ing for Extended Finite State Machines”. In: Formal Aspects of Computing

28.2 (2016), pp. 233–263. doi: 10.1007/s00165-016-0355-5.

[42] Georg Chalupar, Stefan Peherstorfer, Erik Poll, and Joeri De Ruiter. “Au-

tomated Reverse Engineering using Lego R©”. In: 8th USENIX Workshop on

Offensive Technologies (WOOT 14). USENIX Association, 2014.

[43] T.S. Chow. “Testing Software Design Modeled by Finite-State Machines”. In:

IEEE Transactions on Software Engineering SE-4.3 (1978), pp. 178–187. doi:

10.1109/TSE.1978.231496.

https://doi.org/10.1007/978-3-642-40206-7_9
https://doi.org/10.1016/0022-4049(77)90067-6
https://doi.org/10.1117/12.783598
https://doi.org/10.1016/j.tcs.2014.04.016
https://doi.org/10.1007/3-540-58027-1_27
https://doi.org/10.1007/s00165-016-0355-5
https://doi.org/10.1109/TSE.1978.231496

210 Bibliography

[44] Dion Coumans and Bart Jacobs. “Scalars, Monads, and Categories”. In: Quan-

tum Physics and Linguistics: A Compositional, Diagrammatic Discourse. Ox-

ford University Press, 2013. doi: 10.1093/acprof:oso/9780199646296.003.

0007.

[45] Karel Culik II and Jarkko Kari. “Image Compression Using Weighted Finite

Automata”. In: Computers & Graphics 17.3 (1993), pp. 305–313. doi: 10.

1016/0097-8493(93)90079-O.

[46] Fredrik Dahlqvist and Todd Schmid. “How to Write a Coequation”. In: 9th

Conference on Algebra and Coalgebra in Computer Science (CALCO 2021).

Leibniz International Proceedings in Informatics (LIPIcs). 2021, 13:1–13:25.

doi: 10.4230/LIPIcs.CALCO.2021.13.

[47] Loris D’Antoni and Margus Veanes. “Minimization of Symbolic Automata”.

In: Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages. POPL ’14. Association for Computing Machinery,

2014, pp. 541–553. doi: 10.1145/2535838.2535849.

[48] Joeri De Ruiter and Erik Poll. “Protocol State Fuzzing of TLS Implementa-

tions”. In: Proceedings of the 24th USENIX Conference on Security Sympo-

sium. SEC’15. USENIX Association, 2015, pp. 193–206.

[49] François Denis, Aurélien Lemay, and Alain Terlutte. “Residual Finite State

Automata”. In: Annual Symposium on Theoretical Aspects of Computer Sci-

ence. Springer. 2001, pp. 144–157. doi: 10.1007/3-540-44693-1_13.

[50] Samuel Drews and Loris D’Antoni. “Learning Symbolic Automata”. In: Inter-

national Conference on Tools and Algorithms for the Construction and Analy-

sis of Systems. Springer. 2017, pp. 173–189. doi: 10.1007/978-3-662-54577-

5_10.

[51] Loris D’Antoni, Tiago Ferreira, Matteo Sammartino, and Alexandra Silva.

“Symbolic Register Automata”. In: International Conference on Computer

Aided Verification. Springer. 2019, pp. 3–21. doi: 10.1007/978- 3- 030-

25540-4_1.

https://doi.org/10.1093/acprof:oso/9780199646296.003.0007
https://doi.org/10.1016/0097-8493(93)90079-O
https://doi.org/10.4230/LIPIcs.CALCO.2021.13
https://doi.org/10.1145/2535838.2535849
https://doi.org/10.1007/3-540-44693-1_13
https://doi.org/10.1007/978-3-662-54577-5_10
https://doi.org/10.1007/978-3-030-25540-4_1

Bibliography 211

[52] Samuel Eilenberg, John C. Moore, et al. “Adjoint Functors and Triples”. In:

Illinois Journal of Mathematics 9.3 (1965), pp. 381–398. doi: 10.1215/ijm/

1256068141.

[53] Yann Esposito, Aurélien Lemay, François Denis, and Pierre Dupont. “Learning

Probabilistic Residual Finite State Automata”. In: International Colloquium

on Grammatical Inference. Springer. 2002, pp. 77–91. doi: 10.1007/3-540-

45790-9_7.

[54] Azadeh Farzan, Yu Fang Chen, Edmund M. Clarke, Yih Kuen Tsay, and

Bow Yaw Wang. “Extending Automated Compositional Verification to the

Full Class of Omega-Regular Languages”. In: Tools and Algorithms for the

Construction and Analysis of Systems. Springer, 2008, pp. 2–17.

[55] Nick Feamster, Jennifer Rexford, and Ellen Zegura. “The Road to SDN: An

Intellectual History of Programmable Networks”. In: ACM SIGCOMM Com-

puter Communication Review 44.2 (2014), pp. 87–98. doi: 10.1145/2602204.

2602219.

[56] Dana Fisman, Hadar Frenkel, and Sandra Zilles. “Inferring Symbolic Au-

tomata”. In: 30th EACSL Annual Conference on Computer Science Logic

(CSL 2022). Vol. 216. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,

2022, 21:1–21:19. doi: 10.4230/LIPIcs.CSL.2022.21.

[57] Nate Foster, Dexter Kozen, Matthew Milano, Alexandra Silva, and Laure

Thompson. “A Coalgebraic Decision Procedure for NetKAT”. In: Proceedings

of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages. POPL ’15. Association for Computing Machinery,

2015, pp. 343–355. doi: 10.1145/2676726.2677011.

[58] Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and

Alexandra Silva. “Probabilistic NetKAT”. In: Proceedings of the 25th European

Symposium on Programming Languages and Systems. Springer, 2016, pp. 282–

309. doi: 10.1007/978-3-662-49498-1_12.

https://doi.org/10.1215/ijm/1256068141
https://doi.org/10.1007/3-540-45790-9_7
https://doi.org/10.1145/2602204.2602219
https://doi.org/10.4230/LIPIcs.CSL.2022.21
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1007/978-3-662-49498-1_12

212 Bibliography

[59] Georgios Giantamidis and Stavros Tripakis. “Learning Moore Machines from

Input-Output Traces”. In: FM 2016: Formal Methods. Springer, 2016, pp. 291–

309. doi: 10.1007/978-3-319-48989-6_18.

[60] Niels Bjørn Bugge Grathwohl, Dexter Kozen, and Konstantinos Mamouras.

“KAT + B!” In: Proceedings of the Joint Meeting of the Twenty-Third EACSL

Annual Conference on Computer Science Logic and the Twenty-Ninth Annual

ACM/IEEE Symposium on Logic in Computer Science. CSL-LICS ’14. Asso-

ciation for Computing Machinery, 2014, pp. 1–10. doi: 10.1145/2603088.

2603095.

[61] Andreas Hagerer, Hardi Hungar, Oliver Niese, and Bernhard Steffen. “Model

Generation by Moderated Regular Extrapolation”. In: International Confer-

ence on Fundamental Approaches to Software Engineering. Springer. 2002,

pp. 80–95. doi: 10.1007/3-540-45923-5_6.

[62] Helle Hvid Hansen, Clemens Kupke, and Raul Andres Leal. “Strong Complete-

ness for Iteration-Free Coalgebraic Dynamic Logics”. In: IFIP International

Conference on Theoretical Computer Science. Springer. 2014, pp. 281–295.

doi: 10.1007/978-3-662-44602-7_22.

[63] Gerco van Heerdt. “An Abstract Automata Learning Framework”. MA thesis.

Radboud University Nijmegen, 2016.

[64] Gerco van Heerdt. “CALF: Categorical Automata Learning Framework”. PhD

thesis. University College London, 2020.

[65] Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva. “CALF: Cat-

egorical Automata Learning Framework”. In: 26th EACSL Annual Confer-

ence on Computer Science Logic (CSL 2017). Vol. 82. Leibniz International

Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer

Informatik, 2017, 29:1–29:24. doi: 10.4230/LIPIcs.CSL.2017.29.

[66] Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva. “Learning Au-

tomata with Side-Effects”. In: Coalgebraic Methods in Computer Science.

Springer, 2020, pp. 68–89. doi: 10.1007/978-3-030-57201-3_5.

https://doi.org/10.1007/978-3-319-48989-6_18
https://doi.org/10.1145/2603088.2603095
https://doi.org/10.1007/3-540-45923-5_6
https://doi.org/10.1007/978-3-662-44602-7_22
https://doi.org/10.4230/LIPIcs.CSL.2017.29
https://doi.org/10.1007/978-3-030-57201-3_5

Bibliography 213

[67] Gerco van Heerdt, Joshua Moerman, Matteo Sammartino, and Alexandra

Silva. “A (Co)Algebraic Theory of Succinct Automata”. In: Journal of Log-

ical and Algebraic Methods in Programming 105 (2019), pp. 112–125. doi:

10.1016/j.jlamp.2019.02.008.

[68] Gerco van Heerdt, Clemens Kupke, Jurriaan Rot, and Alexandra Silva. “Learn-

ing Weighted Automata over Principal Ideal Domains”. In: Foundations of

Software Science and Computation Structures. Springer, 2020, pp. 602–621.

doi: 10.1007/978-3-030-45231-5_31.

[69] Wim H. Hesselink and Albert Thijs. “Fixpoint Semantics and Simulation”.

In: Theoretical Computer Science 238.1 (2000), pp. 275–311. doi: 10.1016/

S0304-3975(98)00176-5.

[70] John E Hopcroft and Richard M Karp. A Linear Algorithm for Testing Equiv-

alence of Finite Automata. Vol. 114. Defense Technical Information Center,

1971.

[71] Falk Howar. “Active Learning of Interface Programs”. PhD thesis. Dortmund

University of Technology, 2012. doi: 10.17877/DE290R-4817.

[72] Falk Howar, Bernhard Steffen, Bengt Jonsson, and Sofia Cassel. “Inferring

Canonical Register Automata”. In: International Workshop on Verification,

Model Checking, and Abstract Interpretation. Springer. 2012, pp. 251–266.

[73] Malte Isberner, Falk Howar, and Bernhard Steffen. “Learning Register Au-

tomata: From Languages to Program Structures”. In: Machine Learning 96.1

(2014), pp. 65–98. doi: 10.1007/s10994-013-5419.

[74] Malte Isberner, Falk Howar, and Bernhard Steffen. “The TTT Algorithm: A

Redundancy-Free Approach to Active Automata Learning”. In: International

Conference on Runtime Verification. Springer. 2014, pp. 307–322. doi: 10.

1007/978-3-319-11164-3_26.

[75] Bart Jacobs. “A Bialgebraic Review of Deterministic Automata, Regular Ex-

pressions and Languages”. In: Algebra, Meaning, and Computation. Springer,

2006, pp. 375–404. doi: 10.1007/11780274_20.

https://doi.org/10.1016/j.jlamp.2019.02.008
https://doi.org/10.1007/978-3-030-45231-5_31
https://doi.org/10.1016/S0304-3975(98)00176-5
https://doi.org/10.17877/DE290R-4817
https://doi.org/10.1007/s10994-013-5419
https://doi.org/10.1007/978-3-319-11164-3_26
https://doi.org/10.1007/11780274_20

214 Bibliography

[76] Bart Jacobs. “A Recipe for State-and-Effect Triangles”. In: 6th Conference on

Algebra and Coalgebra in Computer Science (CALCO 2015). Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik. 2015.

[77] Bart Jacobs. “Bases as Coalgebras”. In: Algebra and Coalgebra in Computer

Science. Springer. 2011, pp. 237–252. doi: 10.1007/978-3-642-22944-2_17.

[78] Bart Jacobs. Introduction to Coalgebra: Towards Mathematics of States and

Observation. Cambridge Tracts in Theoretical Computer Science. Cambridge

University Press, 2016. doi: 10.1017/CBO9781316823187.

[79] Bart Jacobs and Jesse Hughes. “Simulations in Coalgebra”. In: Electronic

Notes in Theoretical Computer Science 82.1 (2003), pp. 128–149. issn: 1571-

0661. doi: 10.1016/S1571-0661(04)80636-4.

[80] Bart Jacobs and Alexandra Silva. “Automata Learning: A Categorical Perspec-

tive”. In: Horizons of the Mind. A Tribute to Prakash Panangaden. Springer,

2014, pp. 384–406. doi: 10.1007/978-3-319-06880-0_20.

[81] Bart Jacobs, Alexandra Silva, and Ana Sokolova. “Trace Semantics via Deter-

minization”. In: International Workshop on Coalgebraic Methods in Computer

Science. Springer. 2012, pp. 109–129. doi: 10.1007/978-3-642-32784-1_7.

[82] Michael Kaminski and Nissim Francez. “Finite-Memory Automata”. In: The-

oretical Computer Science 134.2 (1994), pp. 329–363. doi: 10.1016/0304-

3975(94)90242-9.

[83] Michael J Kearns, Umesh Virkumar Vazirani, and Umesh Vazirani. An Intro-

duction to Computational Learning Theory. MIT Press, 1994. doi: 10.7551/

mitpress/3897.001.0001.

[84] S. C. Kleene. “Representation of Events in Nerve Nets and Finite Automata”.

In: Automata Studies. Vol. 34. Princeton University Press, 1956, pp. 3–42. doi:

10.1515/9781400882618-002.

[85] Bartek Klin. “A Coalgebraic Approach to Process Equivalence and a Coin-

duction Principle for Traces”. In: Electronic Notes in Theoretical Computer

Science 106 (2004), pp. 201–218. doi: 10.1016/j.entcs.2004.02.029.

https://doi.org/10.1007/978-3-642-22944-2_17
https://doi.org/10.1017/CBO9781316823187
https://doi.org/10.1016/S1571-0661(04)80636-4
https://doi.org/10.1007/978-3-319-06880-0_20
https://doi.org/10.1007/978-3-642-32784-1_7
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.7551/mitpress/3897.001.0001
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1016/j.entcs.2004.02.029

Bibliography 215

[86] Bartek Klin. “Bialgebras for Structural Operational Semantics: An Introduc-

tion”. In: Theoretical Computer Science 412.38 (2011), pp. 5043–5069. doi:

10.1016/j.tcs.2011.03.023.

[87] Bartek Klin and Beata Nachyla. “Presenting Morphisms of Distributive Laws”.

In: 6th Conference on Algebra and Coalgebra in Computer Science (CALCO

2015). Vol. 35. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. 2015,

190–204. doi: 10.4230/LIPIcs.CALCO.2015.190.

[88] Dexter Kozen. “A Completeness Theorem for Kleene Algebras and the Algebra

of Regular Events”. In: Information and Computation 110.2 (1994), pp. 366–

390. doi: 10.1006/inco.1994.1037.

[89] Dexter Kozen. Automata on Guarded Strings and Applications. Tech. rep. Cor-

nell University, 2001.

[90] Dexter Kozen. “Kleene Algebra with Tests”. In: ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS) 19.3 (1997), pp. 427–443. doi:

10.1145/256167.256195.

[91] Dexter Kozen. “On the Coalgebraic Theory of Kleene Algebra with Tests”.

In: Rohit Parikh on Logic, Language and Society. Springer, 2017, pp. 279–298.

doi: 10.1007/978-3-319-47843-2_15.

[92] Dexter Kozen and Frederick Smith. “Kleene Algebra with Tests: Completeness

and Decidability”. In: International Workshop on Computer Science Logic.

Springer. 1997, pp. 244–259. doi: 10.1007/3-540-63172-0_43.

[93] Dexter Kozen and Wei-Lung Dustin Tseng. “The Böhm–Jacopini Theorem is

False, Propositionally”. In: International Conference on Mathematics of Pro-

gram Construction. Springer, 2008, pp. 177–192. doi: 10.1007/978-3-540-

70594-9_11.

[94] Dexter C. Kozen. Automata and Computability. 1st. Springer, 1997. doi: 10.

1007/978-1-4612-1844-9.

[95] Alexander Kurz. “Logics for Coalgebras and Applications to Computer Sci-

ence”. PhD thesis. Ludwig-Maximilians-Universität München, 2000.

[96] Serge Lang. “Algebra”. In: Graduate Texts in Mathematics (2002).

https://doi.org/10.1016/j.tcs.2011.03.023
https://doi.org/10.4230/LIPIcs.CALCO.2015.190
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1145/256167.256195
https://doi.org/10.1007/978-3-319-47843-2_15
https://doi.org/10.1007/3-540-63172-0_43
https://doi.org/10.1007/978-3-540-70594-9_11
https://doi.org/10.1007/978-1-4612-1844-9

216 Bibliography

[97] S󰀀lawomir Lasota, Bartek Klin, and Miko󰀀laj Bojańczyk. “Automata Theory

in Nominal Sets”. In: Logical Methods in Computer Science 10.3 (2014). doi:

10.2168/LMCS-10(3:4)2014.

[98] Chin Soon Lee, Neil D Jones, and Amir M Ben-Amram. “The Size-Change

Principle for Program Termination”. In: Proceedings of the 28th ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

POPL ’01. Association for Computing Machinery, 2001, pp. 81–92. doi: 10.

1145/360204.360210.

[99] Tom Leinster. Basic Category Theory. Cambridge Studies in Advanced Mathe-

matics. Cambridge University Press, 2014. doi: 10.1017/CBO9781107360068.

[100] Marina Lenisa, John Power, and Hiroshi Watanabe. “Distributivity for Endo-

functors, Pointed and Co-pointed Endofunctors, Monads and Comonads”. In:

Electronic Notes in Theoretical Computer Science 33 (2000), pp. 230–260. doi:

10.1016/S1571-0661(05)80350-0.

[101] Paul Blain Levy. “Similarity Quotients as Final Coalgebras”. In: Foundations

of Software Science and Computational Structures. Springer. 2011, pp. 27–41.

doi: 10.1007/978-3-642-19805-2_3.

[102] Yong Li, Yu-Fang Chen, Lijun Zhang, and Depeng Liu. “A Novel Learning

Algorithm for Büchi Automata Based on Family of DFAs and Classification

Trees”. In: Tools and Algorithms for the Construction and Analysis of Systems.

Vol. 281. Springer, 2017, pp. 208–226. doi: 10.1007/978-3-662-54577-5_12.

[103] Yong Li, Yu-Fang Chen, Lijun Zhang, and Depeng Liu. “A Novel Learning

Algorithm for Büchi Automata Based on Family of DFAs and Classification

Trees”. In: International Conference on Tools and Algorithms for the Con-

struction and Analysis of Systems. Springer. 2017, pp. 208–226.

[104] Fred EJ Linton. “Some Aspects of Equational Categories”. In: Proceedings of

the Conference on Categorical Algebra. Springer. 1966, pp. 84–94. doi: 10.

1007/978-3-642-99902-4_3.

[105] Saunders Mac Lane. Categories for the Working Mathematician. Vol. 5.

Springer, 2013. doi: 10.1007/978-1-4757-4721-8.

https://doi.org/10.2168/LMCS-10(3:4)2014
https://doi.org/10.1145/360204.360210
https://doi.org/10.1017/CBO9781107360068
https://doi.org/10.1016/S1571-0661(05)80350-0
https://doi.org/10.1007/978-3-642-19805-2_3
https://doi.org/10.1007/978-3-662-54577-5_12
https://doi.org/10.1007/978-3-642-99902-4_3
https://doi.org/10.1007/978-1-4757-4721-8

Bibliography 217

[106] Saunders MacLane. “Duality for Groups”. In: Bulletin of the American Math-

ematical Society 56.6 (1950), pp. 485–516.

[107] Oded Maler and Irini-Eleftheria Mens. “Learning Regular Languages over

Large Alphabets”. In: Tools and Algorithms for the Construction and Analysis

of Systems. Springer, 2014, pp. 485–499. doi: 10.1007/978-3-642-54862-

8_41.

[108] Oded Maler and Amir Pnueli. “On the Learnability of Infinitary Regular Sets”.

In: Information and Computation 118.2 (1995), pp. 316–326. doi: 10.1006/

inco.1995.1070.

[109] George H. Mealy. “A Method for Synthesizing Sequential Circuits”. In: The

Bell System Technical Journal 34.5 (1955), pp. 1045–1079. doi: 10.1002/j.

1538-7305.1955.tb03788.x.

[110] Joshua Moerman. “Learning Product Automata”. In: Proceedings of The 14th

International Conference on Grammatical Inference 2018. Vol. 93. Proceedings

of Machine Learning Research. PMLR, 2019, pp. 54–66.

[111] Joshua Moerman and Matteo Sammartino. “Residual Nominal Automata”. In:

CONCUR. Vol. 171. 2020, 44:1–44:21. doi: 10.4230/LIPIcs.CONCUR.2020.

44.

[112] Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin, and

Micha󰀀l Szynwelski. “Learning Nominal Automata”. In: Proceedings of the 44th

ACM SIGPLAN Symposium on Principles of Programming Languages. POPL

’17. Association for Computing Machinery, 2017, 613–625. doi: 10.1145/

3009837.3009879.

[113] Eugenio Moggi. An Abstract View of Programming Languages. University of

Edinburgh, Department of Computer Science, Laboratory for Foundations of

Computer Science, 1990.

[114] Eugenio Moggi. Computational Lambda-Calculus and Monads. University of

Edinburgh, Department of Computer Science, Laboratory for Foundations of

Computer Science, 1988.

https://doi.org/10.1007/978-3-642-54862-8_41
https://doi.org/10.1006/inco.1995.1070
https://doi.org/10.1002/j.1538-7305.1955.tb03788.x
https://doi.org/10.4230/LIPIcs.CONCUR.2020.44
https://doi.org/10.1145/3009837.3009879

218 Bibliography

[115] Eugenio Moggi. “Notions of Computation and Monads”. In: Information and

Computation 93.1 (1991), pp. 55–92. doi: 10.1016/0890-5401(91)90052-4.

[116] Mehryar Mohri. “Weighted Automata Algorithms”. In: Handbook of Weighted

Automata. Springer, 2009, pp. 213–254. doi: 10.1007/978-3-642-01492-5_6.

[117] Mehryar Mohri, Fernando Pereira, and Michael Riley. “Speech Recognition

with Weighted Finite-State Transducers”. In: Springer Handbook of Speech

Processing. Springer, 2008, pp. 559–584. doi: 10.1007/978-3-540-49127-

9_28.

[118] Tyler Moore. “Gedanken–experiments on Sequential Machines”. In: Automata

Studies, Annals of Mathematical Studies, no. 34. Citeseer. 1956.

[119] Robert S. R. Myers, Jiri Adamek, Stefan Milius, and Henning Urbat. “Coalge-

braic Constructions of Canonical Nondeterministic Automata”. In: Theoretical

Computer Science 604 (2015), pp. 81–101. doi: 10.1016/j.tcs.2015.03.035.

[120] Anil Nerode. “Linear Automaton Transformations”. In: Proceedings of the

American Mathematical Society 9.4 (1958), pp. 541–544. doi: 10.2307/2033204.

[121] Number of join-irreducible elements of a lattice: is it monotonic? url: https:

//math.stackexchange.com/questions/801833/number-of-join-irreduc

ible-elements-of-a-lattice-is-it-monotonic (visited on 03/29/2021).

[122] OCaml. url: https://ocaml.org.

[123] Louis Parlant, Jurriaan Rot, Alexandra Silva, and Bas Westerbaan. “Preser-

vation of Equations by Monoidal Monads”. In: 45th International Symposium

on Mathematical Foundations of Computer Science (MFCS 2020). Vol. 170.

Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–

Leibniz-Zentrum für Informatik, 2020, 77:1–77:14. doi: 10.4230/LIPIcs.

MFCS.2020.77.

[124] Jorge M Pena and Arlindo L Oliveira. “A New Algorithm for the Reduction

of Incompletely Specified Finite State Machines”. In: 1998 IEEE/ACM In-

ternational Conference on Computer-Aided Design. 1998, pp. 482–489. doi:

10.1145/288548.289075.

https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1007/978-3-642-01492-5_6
https://doi.org/10.1007/978-3-540-49127-9_28
https://doi.org/10.1016/j.tcs.2015.03.035
https://doi.org/10.2307/2033204
https://math.stackexchange.com/questions/801833/number-of-join-irreducible-elements-of-a-lattice-is-it-monotonic
https://ocaml.org
https://doi.org/10.4230/LIPIcs.MFCS.2020.77
https://doi.org/10.1145/288548.289075

Bibliography 219

[125] Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science.

Vol. 57. Cambridge University Press, 2013.

[126] Amir Pnueli and Roni Rosner. “On the Synthesis of a Reactive Module”. In:

Proceedings of the 16th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages. POPL ’89. Association for Computing Machinery,

1989, pp. 179–190. doi: 10.1145/75277.75293.

[127] Damien Pous. “Symbolic Algorithms for Language Equivalence and Kleene

Algebra with Tests”. In: Proceedings of the 42nd Annual ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages. POPL ’15.

Association for Computing Machinery, 2015, pp. 357–368. doi: 10 . 1145 /

2676726.2677007.

[128] John Power and Hiroshi Watanabe. “Combining a Monad and a Comonad”.

In: Theoretical Computer Science 280.1 (2002), pp. 137–162. doi: https://

doi.org/10.1016/S0304-3975(01)00024-X.

[129] Emily Riehl. “Factorization Systems”. In: (2008). url: https://math.jhu.

edu/~eriehl/factorization.pdf (visited on 11/28/2022).

[130] Ronald L Rivest and Robert E Schapire. “Inference of Finite Automata Using

Homing Sequences”. In: Information and Computation 103.2 (1993), pp. 299–

347. doi: 10.1006/inco.1993.1021.

[131] Jan Rutten. “The Method of Coalgebra: Exercises in Coinduction”. In: (2019).

[132] Jan Rutten. “Universal Coalgebra: A Theory of Systems”. In: Theoretical Com-

puter Science 249.1 (2000), pp. 3–80. doi: 10.1016/S0304-3975(00)00056-6.

[133] Jan Rutten, Marcello Bonsangue, Filippo Bonchi, and Alexandra Silva. “Gen-

eralizing Determinization from Automata to Coalgebras”. In: Logical Methods

in Computer Science 9.1 (2013). doi: 10.2168/LMCS-9(1:9)2013.

[134] Arto Salomaa and Matti Soittola. “Automata-Theoretic Aspects of Formal

Power Series”. In: Texts and Monographs in Computer Science. Springer, 1978.

doi: 10.1007/978-1-4612-6264-0.

https://doi.org/10.1145/75277.75293
https://doi.org/10.1145/2676726.2677007
https://doi.org/https://doi.org/10.1016/S0304-3975(01)00024-X
https://math.jhu.edu/~eriehl/factorization.pdf
https://doi.org/10.1006/inco.1993.1021
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.2168/LMCS-9(1:9)2013
https://doi.org/10.1007/978-1-4612-6264-0

220 Bibliography

[135] T Schmid, T Kappé, D Kozen, and A Silva. “Guarded Kleene Algebra with

Tests: Coequations, Coinduction, and Completeness”. In: 48th International

Colloquium on Automata, Languages, and Programming (ICALP 2021). Vol.

198. Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl

– Leibniz-Zentrum für Informatik, 2021, p. 142. doi: 10.4230/LIPIcs.ICALP.

2021.142.

[136] Lutz Schröder. “Expressivity of Coalgebraic Modal Logic: The Limits and

Beyond”. In: Theoretical Computer Science 390.2 (2008), pp. 230–247. doi:

10.1016/j.tcs.2007.09.023.

[137] Lutz Schröder, Dexter Kozen, Stefan Milius, and Thorsten Wißmann. “Nom-

inal Automata with Name Binding”. In: Foundations of Software Science and

Computation Structures. Springer, 2017, pp. 124–142. doi: 10.1007/978-3-

662-54458-7_8.

[138] Gavin J Seal. “Tensors, Monads and Actions”. In: Theory and Applications of

Categories 28.15 (2013), pp. 403–433.

[139] Muzammil Shahbaz and Roland Groz. “Inferring Mealy Machines”. In: Inter-

national Symposium on Formal Methods. Springer. 2009, pp. 207–222. doi:

10.1007/978-3-642-05089-3_14.

[140] Alexandra Silva, Filippo Bonchi, Marcello M Bonsangue, and Jan Rutten.

“Generalizing the Powerset Construction, Coalgebraically”. In: IARCS Annual

Conference on Foundations of Software Technology and Theoretical Computer

Science (FSTTCS 2010). Vol. 8. Schloss Dagstuhl – Leibniz-Zentrum fuer In-

formatik, 2010, pp. 272–283. doi: 10.4230/LIPIcs.FSTTCS.2010.272.

[141] Steffen Smolka, Spiridon Eliopoulos, Nate Foster, and Arjun Guha. “A Fast

Compiler for NetKAT”. In: Proceedings of the 20th ACM SIGPLAN Interna-

tional Conference on Functional Programming. 2015, pp. 328–341.

[142] Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and

Alexandra Silva. “Guarded Kleene Algebra with Tests: Verification of Unin-

terpreted Programs in Nearly Linear Time”. In: Proceedings of the ACM on

Programming Languages 4.POPL (2019), pp. 1–28. doi: 10.1145/3371129.

https://doi.org/10.4230/LIPIcs.ICALP.2021.142
https://doi.org/10.1016/j.tcs.2007.09.023
https://doi.org/10.1007/978-3-662-54458-7_8
https://doi.org/10.1007/978-3-642-05089-3_14
https://doi.org/10.4230/LIPIcs.FSTTCS.2010.272
https://doi.org/10.1145/3371129

Bibliography 221

[143] Steffen Smolka, Praveen Kumar, David M Kahn, Nate Foster, Justin Hsu,

Dexter Kozen, and Alexandra Silva. “Scalable Verification of Probabilistic

Networks”. In: Proceedings of the 40th ACM SIGPLAN Conference on Pro-

gramming Language Design and Implementation. PLDI 2019. Association for

Computing Machinery, 2019, pp. 190–203. doi: 10.1145/3314221.3314639.

[144] Bernhard Steffen, Falk Howar, and Malte Isberner. “Active Automata Learn-

ing: From DFAs to Interface Programs and Beyond”. In: Proceedings of the

Eleventh International Conference on Grammatical Inference. Vol. 21. Pro-

ceedings of Machine Learning Research. PMLR, 2012, pp. 195–209.

[145] Bernhard Steffen, Falk Howar, and Maik Merten. “Introduction to Active Au-

tomata Learning From a Practical Perspective”. In: International School on

Formal Methods for the Design of Computer, Communication and Software

Systems. Springer. 2011, pp. 256–296.

[146] Ross Street. “The Formal Theory of Monads”. In: Journal of Pure and Applied

Algebra 2.2 (1972), pp. 149–168. doi: 10.1016/0022-4049(72)90019-9.

[147] Ross Street. “Weak Distributive Laws”. In: Theory and Applications of Cate-

gories 22 (2009), pp. 313–320.

[148] Hellis Tamm andMargus Veanes. “Theoretical Aspects of Symbolic Automata”.

In: SOFSEM 2018: Theory and Practice of Computer Science. Springer, 2018,

pp. 428–441. doi: 10.1007/978-3-319-73117-9_30.

[149] Paul Taylor. “Subspaces in Abstract Stone Duality”. In: Theory and Applica-

tions of Categories 10.13 (2002), pp. 301–368.

[150] Ken Thompson. “Programming Techniques: Regular Expression Search Al-

gorithm”. In: Communications of the ACM 11.6 (1968), pp. 419–422. doi:

10.1145/363347.363387.

[151] Daniele Turi. “Functorial Operational Semantics”. PhD thesis. Vrije Univer-

siteit Amsterdam, 1996.

https://doi.org/10.1145/3314221.3314639
https://doi.org/10.1016/0022-4049(72)90019-9
https://doi.org/10.1007/978-3-319-73117-9_30
https://doi.org/10.1145/363347.363387

222 Bibliography

[152] Daniele Turi and Gordon Plotkin. “Towards a Mathematical Operational Se-

mantics”. In: Proceedings of Twelfth Annual IEEE Symposium on Logic in

Computer Science. IEEE, 1997, pp. 280–291. doi: 10 . 1109 / LICS . 1997 .

614955.

[153] Frits Vaandrager. “Model Learning”. In: Communications of the ACM 60.2

(2017), pp. 86–95. doi: 10.1145/2967606.

[154] Frits Vaandrager, Bharat Garhewal, Jurriaan Rot, and Thorsten Wißmann.

“A New Approach for Active Automata Learning Based on Apartness”. In:

Tools and Algorithms for the Construction and Analysis of Systems. Springer,

2022, pp. 223–243. doi: 10.1007/978-3-030-99524-9_12.

[155] Moshe Y Vardi and Pierre Wolper. “An Automata-Theoretic Approach to

Automatic Program Verification”. In: Proceedings of the Symposium on Logic

in Computer Science (LICS). IEEE Computer Society, 1986, pp. 332–344.

[156] Jean Vuillemin and Nicolas Gama. Efficient Equivalence and Minimization for

Non Deterministic Xor Automata. Tech. rep. Ecole Normale Supérieure, 2010.

[157] Hiroshi Watanabe. “Well-Behaved Translations Between Structural Opera-

tional Semantics”. In: Electronic Notes in Theoretical Computer Science 65.1

(2002), pp. 337–357. doi: 10.1016/S1571-0661(04)80372-4.

[158] Thorsten Wißmann. “Minimality Notions via Factorization Systems and Ex-

amples”. In: Logical Methods in Computer Science 18.3 (2022). doi: 10.46298/

lmcs-18(3:31)2022.

[159] Stefan Zetzsche, Alexandra Silva, and Matteo Sammartino. “Generators and

Bases for Monadic Closures”. In: arXiv preprint arXiv:2010.10223 (2023).

[160] Stefan Zetzsche, Alexandra Silva, and Matteo Sammartino. “Guarded Kleene

Algebra with Tests: Automata Learning”. In: Electronic Notes in Theoretical

Informatics and Computer Science Volume 1 - Proceedings of MFPS XXXVIII

(2023). doi: 10.46298/entics.10505.

https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1145/2967606
https://doi.org/10.1007/978-3-030-99524-9_12
https://doi.org/10.1016/S1571-0661(04)80372-4
https://doi.org/10.46298/lmcs-18(3:31)2022
https://doi.org/10.46298/entics.10505

Bibliography 223

[161] Stefan Zetzsche, Gerco van Heerdt, Matteo Sammartino, and Alexandra Silva.

“Canonical Automata via Distributive Law Homomorphisms”. In: Electronic

Proceedings in Theoretical Computer Science 351 (2021), 296–313. doi: 10.

4204/eptcs.351.18.

[162] Maaike Zwart and Dan Marsden. “No-Go Theorems for Distributive Laws”.

In: 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science

(LICS). IEEE Computer Society, 2019, pp. 1–13. doi: 10.1109/LICS.2019.

8785707.

https://doi.org/10.4204/eptcs.351.18
https://doi.org/10.1109/LICS.2019.8785707

224 Bibliography

List of Figures

1.1 Up to isomorphism, the unique size-minimal DFA accepting the lan-

guage {ab, ac, ba, bc, ca, cb} ⊆ {a, b, c}∗ [20] 18

1.2 An example run of (a variation of) Angluin’s L∗ algorithm for the target

regular language 1 + a · a · a∗ = {ε, aa, aaa, ...} ⊆ {a}∗ 20

1.3 The interplay between expressions, automata, and languages in GKAT,

for Σ = {p, q} and At = {b, b} . 25

1.4 Two non-isomorphic size-minimal NFA accepting the language {ab, ac,
ba, bc, ca, cb} ⊆ {a, b, c}∗ [20] . 26

1.5 Two canonical acceptors for (a+ b)∗a 27

1.6 Algebraic structures as algebras over a monad on the category of sets 29

1.7 Generalised determinisation of automata with side-effects in a monad 30

1.8 The minimal CSL-structured DFA accepting (a+ b)∗a ⊆ {a, b}∗ . . . 32

2.1 The category of adjunctions for a monad T on C 50

3.1 An example run of Angluin’s L∗ algorithm for the target language

󰌻(while b do p); q󰌼 . 59

3.2 An example run of GL∗ for the target language 󰌻(while b do p); q󰌼 . . 63

3.3 Identifying GKAT expressions with imperative programs 65

3.4 The Thompson-automaton Xp(b)q for T = {b} and Σ = {p, q} 66

3.5 A high-level view of the notions introduced in Section 3.4.2 81

3.6 A comparison between GL∗ and L∗ with respect to membership queries 104

3.7 The exact number of membership queries to 󰌻e󰌼 underlying the com-

parison between GL∗ and L∗ in Figure 3.6 105

225

226 List of Figures

3.8 For e = if t1 then do p1 else do p2, |Σ| = 3, and |T | = 2, our imple-

mentation of GL∗ accepts the table in (a), which induces the automaton

in (b). 106

3.9 For e = if t1 then do p1 else do p2, |Σ| = 3, and |T | = 2, our imple-

mentation of L∗ accepts the table in (a), which induces the automaton

in (b). 107

4.1 Two non-isomorphic size-minimal NFA accepting the language {ab, ac,
ba, bc, ca, cb} ⊆ {a, b, c}∗ [20] . 112

4.2 Generalised determinisation of automata with side-effects in a monad 113

4.3 The minimal DFA for L = (a+ b)∗a 115

4.4 The minimal CABA-structured DFA for L = (a + b)∗a, where 1 ≡
[{{x}, {x, y}}], 2 ≡ [∅], 3 ≡ [{∅}], 4 ≡ [{{x, y}, ∅}], 5 ≡ [{{x}, {y},
{x, y}}], 6 ≡ [{{y}}], 7 ≡ [{{y}, ∅}], 8 ≡ [{{x}, {y}, {x, y}, ∅}] 116

4.5 The átomaton for L = (a+ b)∗a . 117

4.6 (a) The minimal CSL-structured DFA for L = (a + b)∗a; (b) The

canonical RFSA for L = (a+ b)∗a . 130

4.7 The orbit-finite representation of the canonical nominal RFSA for L =

{vawau | v, w, u ∈ A∗, a ∈ A} . 132

4.8 (a) The minimal Z2-vector space structured DFA for L = (a + b)∗a

(freely-generated by the DFA in Figure 4.3); (b) Up to the choice of a

basis, the minimal xor automaton for L = (a+ b)∗a 133

4.9 (a) The minimal CDL-structured DFA for L = (a + b)∗a, where 1 ≡
[{{x}, {x, y}}], 2 ≡ [∅], 3 ≡ [{{x}, {y}, {x, y}}], 4 ≡ [{{x}, {y}, {x, y},
∅}]; (b) The distromaton for L = (a+ b)∗a 141

4.10 The minimal xor-CABA automaton is to the minimal xor automaton

what the átomaton is to the canonical RFSA 143

4.11 The minimal xor-CABA automaton for L = (a+ b)∗a 144

5.1 Factorising a T -algebra homomorphism via the factorisation system of

a base category . 167

List of Figures 227

5.2 The basis representation of the counter-clockwise rotation by 90 degree

L : R2 → R2, L(v) = Av with respect to α = {(1, 2), (1, 1)} and

α′ = {(1, 0), (0, 1)} satisfies Lα′α′ = P−1LααP 189

