
Well-Behaved (Co)algebraic Semantics of Regular
Expressions in Dafny

Stefan Zetzsche1 and Wojciech Różowski2

1 Amazon Web Services, United Kingdom
stefanze@amazon.co.uk

2 University College London, United Kingdom
w.rozowski@cs.ucl.ac.uk

Abstract. Regular expressions are commonly understood in terms of
their denotational semantics, that is, through formal languages – the
regular languages. This view is inductive in nature: two primitives are
equivalent if they are constructed in the same way. Alternatively, regular
expressions can be understood in terms of their operational semantics,
that is, through deterministic finite automata. This view is coinductive
in nature: two primitives are equivalent if they are deconstructed in the
same way. It is implied by Kleene’s famous theorem that both views
are equivalent: regular languages are precisely the formal languages ac-
cepted by deterministic finite automata. In this paper, we use Dafny, a
verification-aware programming language, to formally verify, for the first
time, what has been previously established only through proofs-by-hand:
the two semantics of regular expressions are well-behaved, in the sense
that they are in fact one and the same, up to pointwise bisimilarity.
At each step of our formalisation, we propose an interpretation in the
language of Coalgebra. We found that Dafny is particularly well suited
for the task due to its inductive and coinductive features and hope our
approach serves as a blueprint for future generalisations to other theories.

Keywords: Coalgebra · Dafny · Regular Expressions · Semantics

1 Introduction

Regular expressions stand as one of the most ubiquitous formalisms in all of
theoretical computer science. Their inception can be traced back all the way to
Kleene’s seminal paper in 1951 [25]. Today, they play a pivotal role as a founda-
tional element for a wide spectrum of applications [18, 40, 7], encompassing text
searching, pattern matching, lexical analysis, and more.

Typically, regular expressions are understood denotationally, through the
formal languages, that is, sets of finite words over a fixed alphabet, that they
denote. This view is inductive in nature, in the sense that the denotational
semantics of regular expressions is constructed from the bottom-up by following
the finite inductive structure of an expression.

Alternatively, regular expressions can be understood operationally, through
the lenses of deterministic finite automata. This view is coinductive in nature, in

2 S. Zetzsche and W. Różowski

Exp/ ≡ DFA/ ≃

im(Denotational) = im(·) ⊆ Lang.
Denotational

·
Operational

Fig. 1: The triptych of regular expressions, deterministic finite automata, and regular
languages.

the sense that the operational semantics of regular expressions is assigned from
the top-down, by deconstructing an expression, following the coinductive nature
of a potentially infinite language initially observed by Brzozowski [13].

One of Kleene’s many contributions was to show that the denotational and
operational semantics of regular expressions are two sides of the same coin –
they are well-behaved. That is, the denotational interpretation of a regular ex-
pression matches exactly the observable behaviour of its operational interpre-
tation. Kleene’s theorem is of great practical significance, too: for any given
regular expression that represents a text pattern, one can derive, in a canonical
way, an automaton that gives rise to a deterministic algorithm that decides, in
finite time, whether some given string matches the text pattern specified by the
expression [22, 21]. The full triptych of regular expressions, deterministic finite
automata, and regular languages is depicted in Figure 1: the set of regular ex-
pressions modulo the axioms of Kleene Algebra [26] (≡), the set of deterministic
finite automata modulo behavioural equivalence (≃), and the set of regular lan-
guages are in bijection. The composition on the right-hand side of the diagram
can be seen as a function that assigns the operational semantics to an expression.

In more recent years, a more general approach to automata through the lenses
of category theory has become popular: state-based systems are generalised as
coalgebras over an endofunctor [44, 19, 24]. There are many advantages to using
the coalgebraic abstraction of state-based systems. Among others, it allows one
to set aside irrelevant specifics of concrete instantiations, and instead work with
elegant, universal properties. Of particular interest for us are systems that have
both an algebraic (inductive) and a coalgebraic (coinductive) component.

In this paper, we use the built-in inductive and coinductive reasoning capa-
bilities of Dafny [3], a programming language and static verifier, to formalise
the denotational and operational semantics of regular expressions and formally
prove that they are well-behaved, that is, coincide pointwise, up to bisimilar-
ity3. Dafny is a statically typed programming language with native support for
writing and verifying specifications about programs that was first developed by
Leino at Microsoft Research [4, 32]. Dafny combines various paradigms such as
imperative, functional, and object-oriented programming and supports common
programming concepts such as inductive datatypes, immutable and mutable data
structures, lambda functions, and subset types. Dafny can be integrated with
common software development IDEs such as VSCode and emacs. It has been
used in academia for research and the teaching of program verification [39], as

3 The full Dafny source code is available at [51].

Well-Behaved (Co)algebraic Semantics of Regular Expressions in Dafny 3

Dafny

Boogie

Z3C#JavaJavascriptPythonGo

non-ghost + ghost

............non-ghost

Fig. 2: The compilation pipeline of Dafny.

well as in industry by e.g. Amazon [1], ConsenSys [14], and Intel [50]. Teach-
ing material is available online [31, 48] and in print [36]. A blog covers various
aspects of the Dafny ecosystem [2].

One of the features of Dafny is that it allows the clear distinction between
an idealised mathematical specification and an efficient implementation thereof.
As a first example, consider the following purely functional specification of the
Fibonacci sequence:

function Fib(n: nat): nat {
if n <= 1 then n else Fib(n - 1) + Fib(n - 2)

}

While elegant in its recursive definition, Fib is not particularly efficient. A more
realistic implementation is given by the imperative method ComputeFib below:

method ComputeFib(n: nat) returns (b: nat)
ensures b == Fib(n)

{
var c := 1;
b := 0;
for i := 0 to n

invariant b == Fib(i) && c == Fib(i + 1)
{

b, c := c, b + c;
}

}

Dafny allows us to extend the method signature with an ensures clause,
which in this case indicates that the outputs of Fib and ComputeFib coincide on
all possible inputs. To aid Dafny with proving the correctness of the ensures
clause, we have to identify an appropriate invariant of the for loop in the body
of ComputeFib. While not displayed, ensures admits a dual, the requires clause,
which is used to restrict the domain of functions and methods to a subset. The
two clauses are best thought of in terms of pre- and postconditions in the spirit
of Hoare triples [20].

As illustrated above, Dafny programs contain both so-called ghost and non-
ghost parts. Ghost code is meant for the specification of the behaviour of func-
tions and the proof thereof only, not for compilation. Functions, methods, and
variables can be marked ghost with a designated keyword. A method that is
ghost and doesn’t modify the heap is called a lemma. Pre- and postconditions,
assertions, and loop invariants are always considered ghost. The Dafny verifier
translates the ghost and non-ghost parts of a Dafny program into a program in

4 S. Zetzsche and W. Różowski

the intermediate verification language Boogie [8], such that the correctness of
the output program implies the correctness of the input program. To verify the
correctness of a Boogie program, a verification condition is generated from it
and passed to the SMT solver Z3 [16] (Figure 2). Besides Dafny, there are other
verification-aware languages built on top of Boogie and Z3 (e.g. VCC [15] and
Spec# [9]). The non-ghost part of a verified Dafny program can be compiled
to C#, Java, Javascript, Python, and Go, making possible the integration of
verified code with an existing code base (Figure 2).

We found that Dafny is particularly well suited for the task and would like
our approach to serve as a blueprint for future generalisations to other theories.
At each step of our formalisation, we propose an interpretation in the language of
Coalgebra. We hope that the presentation is accessible both for readers that are
familiar with Coalgebra but not so much with Dafny, and for readers unexposed
to Coalgebra, but experienced in Dafny.

In detail, the paper makes the following contributions:

– We formalise regular expressions as an inductive datatype (Section 2.1) and
formal languages as a coinductive codatatype (Section 2.2). We introduce
the concept of bisimilarity of languages (Section 2.5). We equip languages
with an algebraic structure (Section 2.3) and in consequence define the deno-
tational semantics of regular expressions as an induced function from regular
expressions to formal languages (Section 2.4). Finally, we prove that the lat-
ter preserves algebraic structures up to pointwise bisimilarity (Section 2.6).
At each step, we propose an interpretation in the language of Coalgebra.

– We equip the set of regular expressions with a coalgebraic structure of the
type of unpointed deterministic automata (Section 3.1). We then formalise
the operational semantics of regular expressions as an induced function from
regular expressions to formal languages (Section 3.2). Finally, we prove that
the latter preserves coalgebraic structures (Section 3.3).

– We show that the function that formalises the denotational semantics is
also a coalgebra homomorphism (Section 4.1), and that coalgebra homo-
morphisms are unique up to pointwise bisimilarity (Section 4.2). We deduce
that the denotational and operational semantics coincide, up to pointwise
bisimilarity (Section 4.3). Finally, we show that the function that formalises
the operational semantics is also an algebra homomorphism (Section 4.4).

2 Denotational Semantics

In this section, we define, in Dafny, regular expressions and formal languages,
introduce the concept of bisimilarity, formalise the denotational semantics of
regular expressions as a function from regular expressions to formal languages,
and prove that the latter is an algebra homomorphism.

2.1 Regular Expressions as Datatype

We define the set of regular expressions parametric in an alphabet A as an in-
ductive datatype:

Well-Behaved (Co)algebraic Semantics of Regular Expressions in Dafny 5

datatype Exp<A> = | Zero | One | Char(A) | Plus(Exp, Exp) | Comp(Exp, Exp) | Star(Exp)

Note that above, and later, we make use of Dafny’s type parameter comple-
tion [33], which allows us to write Exp instead of Exp<A>.

The definition above captures that a regular expression is either a primitive
character Char(a), a non-deterministic choice between two regular expressions
Plus(e1, e2), a sequential composition of two regular expressions Comp(e1, e2),
a finite number of self-iterations Star(e), or one of the constants Zero (the unit
of Plus) and One (the unit of Comp). At a higher level, the above defines Exp<A>
as the smallest algebraic structure that is equipped with two constants, contains
all elements of type A, and is closed under two binary operations and one unary
operation. Even more abstractly, Exp<A> can be viewed as the initial algebra for
the set endofunctor Σ defined on objects by ΣX = 1 + 1 +A+X2 +X2 +X.

2.2 Formal Languages as Codatatype

We define the set of formal languages parametric in an alphabet A as a coinduc-
tive codatatype:

codatatype Lang<!A> = Alpha(eps: bool, delta: A -> Lang<A>)

Note that we used Dafny’s type-parameter mode !, which indicates that there
could be strictly more values of type Lang<A> than values of type A, for any type
A, and that there is no subtype relation between Lang<A> and Lang, for any
two types A, B. A more detailed explanation of the topic is available at [35].

To some, our way of modelling formal languages might seem odd at first sight.
Typically, a formal language is defined intrinsically, as a set of finite sequences,
that is, an element of type P(A∗) or iset<seq<A>> in Dafny. In our approach, we
instead treat languages extrinsically, in terms of their universal property: it is well
known that iset<seq<A>> forms the greatest abstract coalgebraic structure S that
is equipped with functions eps: S -> bool and delta: S -> (A -> S). Indeed,
for any set U of finite sequences, we can verify whether U contains the empty
sequence, U.eps == ([] in U), and for any a: A we can transition to derivative
U.delta(a) == (iset s | [a] + s in U). In the language of Coalgebra, Lang<!A>
can be modelled as the final coalgebra for the set endofunctor B defined on
objects by BX = 2×XA [44]. Coalgebras for the functor B correspond precisely
to unpointed deterministic automata, and the final object among them provides
a universal semantic domain for their behaviour.

We choose the more abstract perspective on formal languages as it hides
irrelevant specifics and thus allows us to write more elegant proofs. With this
decision, we follow a coalgebraic characterisation of formal languages in Isabelle
[47], but depart from e.g. previous formalisations in Coq [38].

2.3 An Algebra of Formal Languages

If one thinks of a formal language as a set of finite sequences, one will soon realise
that languages admit quite a bit of algebraic structure. In fact, it becomes clear

6 S. Zetzsche and W. Różowski

that formal languages can be equipped with the same type of algebraic structure
as regular expressions.

First, there exists the empty language Zero() that contains no words at all.
Under the view above, we find Zero().eps == false since the empty set does not
contain the empty sequence, and Zero().delta(a) == Zero(), since the derivative
iset s | [a] + s in iset{} with respect to any a: A yields again the empty set.
We thus define:

function Zero<A>(): Lang {
Alpha(false, (a: A) => Zero())

}

Using similar reasoning, we additionally formalise i) the language One() that
contains only the empty sequence; ii) for any a: A the language Singleton(a)
that consists of only the word [a]; iii) the language Plus(L1, L2) which consists
of the union of the languages L1 and L2; iv) the language Comp(L1, L2) that
consists of all possible concatenation of words in L1 and L2; and v) the language
Star(L) that consists of all finite compositions of L with itself. Our definitions
match what is well-known as Brzozowski derivatives [13]:

function One<A>(): Lang {
Alpha(true, (a: A) => Zero())

}

function Singleton<A(==)>(a: A): Lang {
Alpha(false, (b: A) => if a == b then One() else Zero())

}

function {:abstemious} Plus<A>(L1: Lang, L2: Lang): Lang {
Alpha(L1.eps || L2.eps, (a: A) => Plus(L1.delta(a), L2.delta(a)))

}

function {:abstemious} Comp<A>(L1: Lang, L2: Lang): Lang {
Alpha(L1.eps && L2.eps,

(a: A) => Plus(Comp(L1.delta(a), L2),
Comp(if L1.eps then One() else Zero(), L2.delta(a))))

}

function Star<A>(L: Lang): Lang {
Alpha(true, (a: A) => Comp(L.delta(a), Star(L)))

}

Note the use of the equality-supporting type parameter == in the definition
of Singleton, which restricts the use of the function to types A that are known
to support run-time equality comparisons (all types support equality in static
contexts). In this case, the restriction is needed to ensure the well-definedness of
the expression a == b in the definition of Singleton.

Also note that the {:abstemious} attribute above signals that a function does
not need to unfold a codatatype instance very far (perhaps just one destructor
call) to prove a relevant property. Knowing this is the case can aid in proofs of
the properties of the function. In this case, it is needed to convince Dafny that
the corecursive calls in Comp and Star are logically consistent.

In the language of Coalgebra, the above is best described by us equipping
Lang with an algebra structure for the functor Σ. To derive a function such as

Well-Behaved (Co)algebraic Semantics of Regular Expressions in Dafny 7

Σ(Exp) Σ(Lang)

Exp Lang

Σ(Denotational)

[Zero,One,Singleton,Plus,Comp,Star]
Denotational

Exp Lang

B(Exp) B(Lang)
〈Eps,Delta〉

Operational

B(Operational)

Fig. 3: Denotational and Operational as induced unique Σ-algebra and B-coalgebra
homomorphisms, respectively.

e.g. Comp above, one gives the product (Lang, Lang) an appropriate B-coalgebra
structure and deduces a unique morphism (Lang, Lang) -> Lang from the finality
of Lang as B-coalgebra [44].

2.4 Denotational Semantics as Induced Morphism

The denotational semantics of regular expressions can now be defined through
induction, as a function Denotational: Exp -> Lang, by making use of the oper-
ations on languages we have just defined in Section 2.3. For the sake of clarity,
we encapsulate those in a module named Languages:

function Denotational<A(==)>(e: Exp): Lang {
match e
case Zero => Languages.Zero()
case One => Languages.One()
case Char(a) => Languages.Singleton(a)
case Plus(e1, e2) => Languages.Plus(Denotational(e1), Denotational(e2))
case Comp(e1, e2) => Languages.Comp(Denotational(e1), Denotational(e2))
case Star(e1) => Languages.Star(Denotational(e1))

}

The high-level view through the lenses of Coalgebra is depicted in Fig-
ure 3. By the initiality of Exp as algebra for Σ, there exists a unique morphism
Denotational: Exp -> Lang that commutes with the algebraic structures (we for-
mally prove the latter in Dafny in Section 2.6).

2.5 Bisimilarity and Coinduction

Let us briefly recall the notion of bisimilarity of formal languages. A binary
relation R between languages is called bisimulation, if for any two languages L1,
L2 related by R the following holds: i) L1 contains the empty word iff L2 does; and
ii) for any a: A, the derivatives L1.delta(a) and L2.delta(a) are again related
by R. As it turns out, the union of two bisimulations is again a bisimulation. In
consequence, one can combine all possible bisimulations into a single relation:
the greatest bisimulation. Two languages are called bisimilar if they are related
by this greatest bisimulation. In Dafny, we can formalise the latter as follows:

greatest predicate Bisimilar<A(!new)>[nat](L1: Lang, L2: Lang) {
&& (L1.eps == L2.eps)
&& (forall a :: Bisimilar(L1.delta(a), L2.delta(a)))

}

8 S. Zetzsche and W. Różowski

Note that we used Dafny’s type-parameter mode !new, which restricts the use
of Bisimilar to values of type A that are not heap-based. This is necessary since
a forall expression involved in a greatest predicate definition is not allowed
to depend on the set of allocated references.

Two languages that are equal are also bisimilar, but the reverse is not neces-
sarily true, since there is no extensional equality for functions in Dafny.

It is instructive to think of a greatest predicate as pure syntactic sugar. In-
deed, under the hood, Dafny’s compiler uses the body above to implicitly gener-
ate i) for any k: nat, a prefix predicate Bisimilar#[k](L1, L2) that signifies that
the languages L1 and L2 concur on the first k-unrollings of the definition above;
and ii) a predicate Bisimilar(L1, L2) that is true iff Bisimilar#[k](L1, L2) is
true for all k: nat:

/* Pseudo code for illustration purposes */

predicate Bisimilar#<A(!new)>[k: nat](L1: Lang, L2: Lang)
decreases k

{
if k == 0 then

true
else

&& (L1.eps == L2.eps)
&& (forall a :: Bisimilar#[k-1](L1.delta(a), L2.delta(a)))

}

predicate Bisimilar<A(!new)>(L1: Lang, L2: Lang) {
forall k: nat :: Bisimilar#[k](L1, L2)

}

Note the use of the decreases clause in the definition of Bisimilar#[k](L1, L2).
Dafny requires us to convince it that all functions terminate. A decreases clause
is used to support the proof of termination of a function in the presence of re-
cursion. At each recursive call to a function, Dafny checks that the decreases
clause is strictly smaller than the one of its caller with respect to a built-in well-
founded order. In this case, Dafny verifies the inequality k-1 < k with respect to
the natural well-founded order < of nat.

Now that we have its definition in place, let us establish a property about
bisimilarity, say, that it is a reflexive relation. With the greatest lemma construct,
Dafny is able to derive a proof completely on its own:

greatest lemma BisimilarityIsReflexive<A(!new)>[nat](L: Lang)
ensures Bisimilar(L, L)

{}

Once again, it is instructive to think of a greatest lemma as pure syntactic
sugar. Under the hood, Dafny’s compiler uses the body of BisimilarityIsReflexive
above to generate i) for any k: nat, a prefix lemma BisimilarityIsReflexive#[k](L)
that ensures that the prefix predicate Bisimilar#[k](L, L) is satisfied; and ii)
a lemma BisimilarityIsReflexive(L) that ensures that Bisimilar(L, L) is true
by calling BisimilarityIsReflexive#[k](L, L) for all k: nat:

Well-Behaved (Co)algebraic Semantics of Regular Expressions in Dafny 9

/* Pseudo code for illustration purposes */

lemma BisimilarityIsReflexive#<A(!new)>[k: nat](L: Lang)
ensures Bisimilar#[k](L, L)
decreases k

{
if k == 0 {
} else {

forall a ensures Bisimilar#[k-1](L.delta(a), L.delta(a)) {
BisimilarityIsReflexive#[k-1](L.delta(a));

}
}

}

lemma BisimilarityIsReflexive<A(!new)>(L: Lang)
ensures Bisimilar(L, L)

{
forall k: nat ensures Bisimilar#[k](L, L) {

BisimilarityIsReflexive#[k](L);
}

}

We refer the reader interested in further details about Dafny’s take on coin-
duction, predicates, and ordinals to [37].

2.6 Denotational Semantics as Algebra Homomorphism

In this section, we are interested in homomorphisms of type f: Exp -> Lang
(more precisely, in Denotational), that is, functions which commute, up to bisim-
ilarity, with the algebra structures we encountered in Section 2.1 and Section 2.3,
respectively. In Dafny, we call such functions simply algebra homomorphisms.
We define pointwise commutativity by comparing languages for bisimilarity:

ghost predicate IsAlgebraHomomorphism<A(!new)>(f: Exp -> Lang) {
forall e :: IsAlgebraHomomorphismPointwise(f, e)

}

ghost predicate IsAlgebraHomomorphismPointwise<A(!new)>
(f: Exp -> Lang, e: Exp) {
Bisimilar<A>(

f(e),
match e
case Zero => Languages.Zero()
case One => Languages.One()
case Char(a) => Languages.Singleton(a)
case Plus(e1, e2) => Languages.Plus(f(e1), f(e2))
case Comp(e1, e2) => Languages.Comp(f(e1), f(e2))
case Star(e1) => Languages.Star(f(e1))

)
}

Note that we used the ghost modifier (which signals that an entity is meant
for specification only, not for compilation). A greatest predicate is always
implicitly ghost, so IsAlgebraHomomorphismPointwise must be declared ghost
to call Bisimilar, and IsAlgebraHomomorphism must be declared ghost to call
IsAlgebraHomomorphismPointwise.

The proof that Denotational is an algebra homomorphism is straightforward;
it essentially follows from bisimilarity being reflexive:

10 S. Zetzsche and W. Różowski

lemma DenotationalIsAlgebraHomomorphism<A(!new)>()
ensures IsAlgebraHomomorphism<A>(Denotational)

{
forall e ensures IsAlgebraHomomorphismPointwise<A>(Denotational, e) {

BisimilarityIsReflexive<A>(Denotational(e));
}

}

3 Operational Semantics

In this section, we provide an alternative perspective on the semantics of regular
expressions. In Dafny, we equip the set of regular expressions with a coalgebraic
structure of the type of unpointed deterministic automata, formalise its opera-
tional semantics as a function from regular expressions to formal languages, and
prove that the latter is a coalgebra homomorphism.

3.1 A Coalgebra of Regular Expressions

In Section 2.3 we equipped the set of formal languages with an algebraic structure
that resembled the one of regular expressions. Now, we are aiming for the dual: we
would like to equip the set of regular expressions with a coalgebraic structure that
resembles the one of formal languages. More concretely, we would like to turn the
set of regular expressions into a B-coalgebra, that is, a deterministic automaton
(without initial state) in which a state e is i) accepting iff Eps(e) == true and
ii) transitions to a state Delta(e)(a) if given the input a: A. Note how our
definitions resemble the Brzozowski derivatives:

function Eps<A>(e: Exp): bool {
match e
case Zero => false
case One => true
case Char(a) => false
case Plus(e1, e2) => Eps(e1) || Eps(e2)
case Comp(e1, e2) => Eps(e1) && Eps(e2)
case Star(e1) => true

}

function Delta<A(==)>(e: Exp): A -> Exp {
(a: A) =>

match e
case Zero => Zero
case One => Zero
case Char(b) => if a == b then One else Zero
case Plus(e1, e2) => Plus(Delta(e1)(a), Delta(e2)(a))
case Comp(e1, e2) =>

Plus(Comp(Delta(e1)(a), e2), Comp(if Eps(e1) then One else Zero, Delta(e2)(a)))
case Star(e1) => Comp(Delta(e1)(a), Star(e1))

}

3.2 Operational Semantics as Induced Morphism

The operational semantics of regular expressions can now in Dafny be defined
via coinduction, as a function Operational: Exp -> Lang, by making use of the
coalgebraic structure on expressions for the functor B we have just defined in
Section 3.1:

Well-Behaved (Co)algebraic Semantics of Regular Expressions in Dafny 11

function Operational<A(==)>(e: Exp): Lang {
Alpha(Eps(e), (a: A) => Operational(Delta(e)(a)))

}

The high-level view through the lenses of Coalgebra is depicted in Fig-
ure 3. By the finality of Lang as B-coalgebra, there exists a unique morphism
Operational: Exp -> Lang that commutes with the B-coalgebra structures (the
latter is formally proven in Dafny in Section 3.3).

3.3 Operational Semantics as Coalgebra Homomorphism

In Section 2.6 we defined in Dafny algebra homomorphisms as functions of type
Exp -> Lang that commute, up to bisimilarity, with the Σ-algebra structures of
regular expressions and formal languages, respectively. Analogously, we now de-
fine a function of the same type as coalgebra homomorphism, if it commutes, up
to pointwise bisimilarity, with the B-coalgebra structures of regular expressions
and formal languages, respectively:

ghost predicate IsCoalgebraHomomorphism<A(!new)>(f: Exp -> Lang) {
&& (forall e :: f(e).eps == Eps(e))
&& (forall e, a :: Bisimilar(f(e).delta(a), f(Delta(e)(a))))

}

It is straightforward to formally prove that Operational is a coalgebra homo-
morphism in the above sense: once again, the central argument is that bisimi-
larity is a reflexive relation.

lemma OperationalIsCoalgebraHomomorphism<A(!new)>()
ensures IsCoalgebraHomomorphism<A>(Operational)

{
forall e, a ensures Bisimilar<A>(Operational(e).delta(a), Operational(Delta(e)(a))) {

BisimilarityIsReflexive(Operational(e).delta(a));
}

}

4 Well-Behaved Semantics

So far, we have seen two dual approaches for assigning formal language semantics
to regular expressions:

– Denotational: an algebra homomorphism obtained via induction
– Operational: a coalgebra homomorphism obtained via coinduction

Next, we show in Dafny that the denotational and operational semantics of
regular expressions are well-behaved (a term we adapt from [49]): they constitute
two sides of the same coin. First, we show that Denotational is also a coalgebra
homomorphism, and that coalgebra homomorphisms are unique up to bisimilar-
ity. We then deduce from the former that Denotational and Operational coincide
pointwise, up to bisimilarity. Finally, we show that Operational is also an algebra
homomorphism.

12 S. Zetzsche and W. Różowski

4.1 Denotational Semantics as Coalgebra Homomorphism

In this section, we establish that Denotational not only commutes with the
algebraic structures of regular expressions and formal languages but also with
their coalgebraic structures:

lemma DenotationalIsCoalgebraHomomorphism<A(!new)>()
ensures IsCoalgebraHomomorphism<A>(Denotational)

The proof of the lemma is a bit more elaborate than the ones we have en-
countered so far. It can be divided into two subproofs, both of which make use of
induction. One of the subproofs is straightforward, the other, more difficult one,
again uses the reflexivity of bisimilarity, but also that the latter is a congruence
relation with respect to Plus and Comp:

greatest lemma PlusCongruence<A(!new)>[nat]
(L1a: Lang, L1b: Lang, L2a: Lang, L2b: Lang)
requires Bisimilar(L1a, L1b)
requires Bisimilar(L2a, L2b)
ensures Bisimilar(Plus(L1a, L2a), Plus(L1b, L2b))

{}

lemma CompCongruence<A(!new)>(L1a: Lang, L1b: Lang, L2a: Lang, L2b: Lang)
requires Bisimilar(L1a, L1b)
requires Bisimilar(L2a, L2b)
ensures Bisimilar(Comp(L1a, L2a), Comp(L1b, L2b))

Dafny is able to prove PlusCongruence on its own, as it can take advantage of
the syntactic sugaring of the greatest lemma construct. For CompCongruence we
have to put in a bit of manual work ourselves.

4.2 Coalgebra Homomorphisms Are Unique

The aim of this section is to show in Dafny that, up to pointwise bisimilarity,
there only exists one coalgebra homomorphism of type Exp -> Lang:

lemma UniqueCoalgebraHomomorphism<A(!new)>(f: Exp -> Lang, g: Exp -> Lang, e: Exp)
requires IsCoalgebraHomomorphism(f)
requires IsCoalgebraHomomorphism(g)
ensures Bisimilar(f(e), g(e))

Of course, the perspective of Coalgebra suggests that the statement may in
fact be strengthened to: for any coalgebra C there exists exactly one coalgebra
homomorphism of type C -> Lang, up to pointwise bisimilarity. For our purposes,
the weaker statement above will be sufficient. At the heart of the proof lies the
observation that bisimilarity is transitive:

greatest lemma BisimilarityIsTransitive<A(!new)>[nat](L1: Lang, L2: Lang, L3: Lang)
requires Bisimilar(L1, L2) && Bisimilar(L2, L3)
ensures Bisimilar(L1, L3)

{}

In fact, in practice, we actually use a slightly more fine-grained formalisation,
as is illustrated below by the call to BisimilarityIsTransitivePointwise in the

Well-Behaved (Co)algebraic Semantics of Regular Expressions in Dafny 13

proof of UniqueCoalgebraHomomorphismHelperPointwise, which in turn is used to
prove UniqueCoalgebraHomomorphism:

lemma UniqueCoalgebraHomomorphismHelperPointwise<A(!new)>
(k: nat, f: Exp -> Lang, g: Exp -> Lang, L1: Lang, L2: Lang)
requires IsCoalgebraHomomorphism(f)
requires IsCoalgebraHomomorphism(g)
requires exists e :: Bisimilar#[k](L1, f(e)) && Bisimilar#[k](L2, g(e))
ensures Bisimilar#[k](L1, L2)

{
var e :| Bisimilar#[k](L1, f(e)) && Bisimilar#[k](L2, g(e));
if k != 0 {

forall a ensures Bisimilar#[k-1](L1.delta(a), L2.delta(a)) {
BisimilarityIsTransitivePointwise(

k-1, L1.delta(a), f(e).delta(a), f(Delta(e)(a))
);
BisimilarityIsTransitivePointwise(

k-1, L2.delta(a), g(e).delta(a), g(Delta(e)(a))
);
UniqueCoalgebraHomomorphismHelperPointwise(

k-1, f, g, L1.delta(a), L2.delta(a)
);

}
}}

lemma BisimilarityIsTransitivePointwise<A(!new)>(k: nat, L1: Lang, L2: Lang, L3: Lang)
ensures Bisimilar#[k](L1, L2) && Bisimilar#[k](L2, L3) ==> Bisimilar#[k](L1, L3)

{
if k != 0 {

if Bisimilar#[k](L1, L2) && Bisimilar#[k](L2, L3) {
assert Bisimilar#[k](L1, L3) by {

forall a ensures Bisimilar#[k-1](L1.delta(a), L3.delta(a)) {
BisimilarityIsTransitivePointwise(k-1, L1.delta(a), L2.delta(a), L3.delta(a));

}
}}}}

Note the use of Dafny’s let-such-that assignment :| in the body of the lemma
UniqueCoalgebraHomomorphismHelperPointwise. For any predicate P, the expres-
sion x :| P(x) assigns a value to x such that P(x) is true. The predicate P needs
to be non-empty, but in a ghost context doesn’t have to constrain x uniquely:
the choice of the latter is non-deterministic. To be compilable, the value of a
let-such-that expression must be uniquely determined, however. In this case,
the precondition of the lemma guarantees that the predicate is non-empty. For
further background, we refer the reader to the Dafny Power User note [34].

4.3 Denotational and Operational Semantics Are Bisimilar

From the previous results, we can immediately deduce our main claim that
denotational and operational semantics coincide, up to pointwise bisimilarity:

lemma OperationalAndDenotationalAreBisimilar<A(!new)>(e: Exp)
ensures Bisimilar<A>(Operational(e), Denotational(e))

{
OperationalIsCoalgebraHomomorphism<A>();
DenotationalIsCoalgebraHomomorphism<A>();
UniqueCoalgebraHomomorphism<A>(Operational, Denotational, e);

}

14 S. Zetzsche and W. Różowski

Σ(Exp) Σ(Lang)

Exp Lang

B(Exp) B(Lang)

Σ(Denotational∼=Denotational)

[Zero,One,Singleton,Star,Plus,Comp]
Denotational∼=Operational

〈Eps,Delta〉
B(Denotational∼=Operational)

Fig. 4: The Denotational and Operational semantics of regular expressions are well-
behaved.

4.4 Operational Semantics as Algebra Homomorphism

As a bonus, for the sake of symmetry, let us also prove that Operational is an
algebra homomorphism. (We already know that it is a coalgebra homomorphism,
and that Denotational is both an algebra and coalgebra homomorphism.)

lemma OperationalIsAlgebraHomomorphism<A(!new)>()
ensures IsAlgebraHomomorphism<A>(Operational)

The idea of the proof is to take advantage of Denotational being an algebra
homomorphism, by translating its properties to Operational via the lemma in
Section 4.3. The relevant new statements capture that bisimilarity is symmetric
and a congruence with respect to the Star operation:

greatest lemma BisimilarityIsSymmetric<A(!new)>[nat](L1: Lang, L2: Lang)
ensures Bisimilar(L1, L2) ==> Bisimilar(L2, L1)
ensures Bisimilar(L1, L2) <== Bisimilar(L2, L1)

{}

lemma StarCongruence<A(!new)>(L1: Lang, L2: Lang)
requires Bisimilar(L1, L2)
ensures Bisimilar(Star(L1), Star(L2))

The full picture is depicted in Figure 4: Denotational is induced by the ini-
tiality of Exp and Operational is induced by the finality of Lang. By uniqueness,
the two homomorphisms coincide, up to pointwise bisimilarity – the semantics
of regular expressions are well-behaved.

5 Discussion and Related Work

We have used Dafny’s built-in inductive and coinductive reasoning capabilities
to define the denotational and operational semantics of regular expressions and
to prove that they are well-behaved. The concept of well-behaved semantics, in
the context of bialgebras (which consist of an algebra and a coalgebra over the
same carrier that interact with each other in a suitable way), goes back to Turi
and Plotkin [49] and was adapted by Jacobs to the case of regular expressions
[23]. The bialgebraic perspective on regular expressions can be thought of as a
generalisation of the classical automata-theoretic construction from Brzozowski
in the 1960s [13]. A more modern presentation can be found in e.g. [45]. The

Well-Behaved (Co)algebraic Semantics of Regular Expressions in Dafny 15

coalgebraic aspects build on results by Rutten [44], Gumm [19], and others [24].
As our presentation focused on the most important and high-level aspects of the
proofs in Dafny, we invite the interested reader to take a look at the full Dafny
source code [51].

The work closest to ours in spirit is [47], in which the authors use Isabelle [41],
an LCF-style interactive theorem prover, to prove that formal languages repre-
sented as a coinductively defined trie satisfy the axioms of Kleene Algebra (KA)
[26]. As for the differences, the authors of [47] don’t touch on the aspect of
well-behaved semantics, and we leave a formal proof of the axioms of KA in
Dafny as future work. For the latter, because of the interplay between algebraic
and coalgebraic structures, we plan to employ so-called up-to-techniques [43],
which allow for compact coinductive proofs by making use of the underlying
algebraic structure. Further related to this paper and [47] are [11, 12], in which
the implementation of corecursion in Isabelle is discussed.

We depart from other work [38, 30, 42], which models formal languages in-
trinsically, as sets of words, and consequently begins by equipping the set of
languages with an appropriate coalgebraic structure, whereas our extrinsic treat-
ment in Dafny essentially axiomatises the latter.

6 Future Work

Besides proving in Dafny the soundness of Kleene Algebra axioms for coal-
gebraically defined languages, we are mainly interested in adapting our for-
malisation of the semantics of regular expressions and the proof of their well-
behavedness to other theories.

An immediate target is Kleene Algebra with Tests (KAT) [27], which extends
the theory of regular expressions, Kleene Algebra, with so-called tests (elements
of a finitely generated Boolean Algebra). KAT can be used to reason about
the equivalence of uninterpreted imperative programs, with tests used to model
program guards. The theory has been successfully applied to program schema-
tology [6] and has been used to reason about compiler optimizations [29] and
cache control [10]. KAT admits both denotational semantics, through so-called
guarded string languages, and operational semantics, through so-called automata
on guarded strings [28].

There are more natural targets since KAT has been further extended in multi-
ple directions. One such example is Guarded Kleene Algebra with Tests (GKAT)
[46], an efficiently decidable fragment of KAT that admits operational seman-
tics through strictly deterministic automata on guarded strings [46]. Another
example is NetKAT [5], which extends KAT with primitives that allow the rea-
soning about Software Defined Networks. The verification of properties of such
networks can be reduced to deciding the equivalence of NetKAT expressions,
which in turn relies on their operational semantics [17].

Overall, we hope that the present formalisation both illustrates Dafny’s po-
tential for coalgebraic reasoning and serves as a blueprint for further adaption.

16 S. Zetzsche and W. Różowski

Acknowledgments. The authors are thankful to Aaron Tomb and Rustan Leino for
their comments on an earlier version of this paper.

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.

References

1. Aws encryption sdk for dafny, https://github.com/aws/aws-encryption-sdk-dafny
2. Dafny blog, https://dafny.org/blog/
3. The dafny programming and verification language, https://dafny.org/
4. Microsoft research, https://www.microsoft.com/en-us/research/
5. Anderson, C.J., Foster, N., Guha, A., Jeannin, J., Kozen, D., Schlesinger, C.,

Walker, D.: Netkat: semantic foundations for networks. In: The 41st Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’14, San Diego, CA, USA, January 20-21, 2014. pp. 113–126. ACM (2014).
https://doi.org/10.1145/2535838.2535862

6. Angus, A., Kozen, D.: Kleene algebra with tests and program schematology. Tech.
rep., Cornell University (2002)

7. Ausaf, F., Dyckhoff, R., Urban, C.: POSIX lexing with derivatives of regular expres-
sions (proof pearl). In: Interactive Theorem Proving - 7th International Conference,
ITP 2016, Nancy, France, August 22-25, 2016, Proceedings. Lecture Notes in Com-
puter Science, vol. 9807, pp. 69–86. Springer (2016). https://doi.org/10.1007/978-
3-319-43144-4_5

8. Barnett, M., Chang, B.Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: Formal Methods for
Components and Objects: 4th International Symposium, FMCO 2005, Amsterdam,
The Netherlands, November 1-4, 2005, Revised Lectures 4. pp. 364–387. Springer
(2006)

9. Barnett, M., Fähndrich, M., Leino, K.R.M., Müller, P., Schulte, W., Venter, H.:
Specification and verification: the spec# experience. Communications of the ACM
54(6), 81–91 (2011)

10. Barth, A., Kozen, D.: Equational verification of cache blocking in lu decomposition
using kleene algebra with tests. Tech. rep., Cornell University (2002)

11. Blanchette, J.C., Bouzy, A., Lochbihler, A., Popescu, A., Traytel, D.: Friends with
benefits: Implementing corecursion in foundational proof assistants. In: Program-
ming Languages and Systems: 26th European Symposium on Programming, ESOP
2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22–29, 2017, Proceedings 26. pp.
111–140. Springer (2017)

12. Blanchette, J.C., Popescu, A., Traytel, D.: Foundational extensible corecursion: a
proof assistant perspective. In: Proceedings of the 20th ACM SIGPLAN Interna-
tional Conference on Functional Programming. pp. 192–204 (2015)

13. Brzozowski, J.A.: Derivatives of regular expressions. Journal of the ACM (JACM)
11(4), 481–494 (1964)

14. Cassez, F., Fuller, J., Ghale, M.K., Pearce, D.J., Quiles, H.M.: Formal and ex-
ecutable semantics of the ethereum virtual machine in dafny. In: International
Symposium on Formal Methods. pp. 571–583. Springer (2023)

Well-Behaved (Co)algebraic Semantics of Regular Expressions in Dafny 17

15. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen,
T., Schulte, W., Tobies, S.: Vcc: A practical system for verifying concurrent c. In:
Theorem Proving in Higher Order Logics: 22nd International Conference, TPHOLs
2009, Munich, Germany, August 17-20, 2009. Proceedings 22. pp. 23–42. Springer
(2009)

16. De Moura, L., Bjørner, N.: Z3: An efficient smt solver. In: International conference
on Tools and Algorithms for the Construction and Analysis of Systems. pp. 337–
340. Springer (2008)

17. Foster, N., Kozen, D., Milano, M., Silva, A., Thompson, L.: A coalge-
braic decision procedure for netkat. In: Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2015, Mumbai, India, January 15-17, 2015. pp. 343–355. ACM (2015).
https://doi.org/10.1145/2676726.2677011

18. Friedl, J.E.F.: Mastering Regular Expressions. O’Reilly Media, Sebastopol, CA, 3
edn. (Aug 2006)

19. Gumm, H.P.: Elements of the general theory of coalgebras (2000)
20. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM

12(10), 576–580 (1969). https://doi.org/10.1145/363235.363259
21. Holzer, M., Kutrib, M.: The complexity of regular(-like) ex-

pressions. Int. J. Found. Comput. Sci. 22(7), 1533–1548 (2011).
https://doi.org/10.1142/S0129054111008866

22. Hopcroft, J.E., Karp, R.M.: A linear algorithm for testing equivalence of finite
automata. (1971), https://api.semanticscholar.org/CorpusID:120207847

23. Jacobs, B.: A bialgebraic review of deterministic automata, regular expressions and
languages. In: Algebra, Meaning, and Computation, Essays Dedicated to Joseph A.
Goguen on the Occasion of His 65th Birthday. Lecture Notes in Computer Science,
vol. 4060, pp. 375–404. Springer (2006). https://doi.org/10.1007/11780274_20

24. Jacobs, B., Silva, A., Sokolova, A.: Trace semantics via determinization. In: In-
ternational Workshop on Coalgebraic Methods in Computer Science. pp. 109–129.
Springer (2012)

25. Kleene, S.: Representation of events in nerve nets and finite automata. Automata
studies 3 (1951)

26. Kozen, D.: A completeness theorem for kleene algebras and the
algebra of regular events. Inf. Comput. 110(2), 366–390 (1994).
https://doi.org/10.1006/INCO.1994.1037

27. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3),
427–443 (1997). https://doi.org/10.1145/256167.256195

28. Kozen, D.: Automata on guarded strings and applications. Tech. rep., Cornell
University (2001)

29. Kozen, D., Patron, M.: Certification of compiler optimizations using kleene al-
gebra with tests. In: Computational Logic - CL 2000, First International Con-
ference, London, UK, 24-28 July, 2000, Proceedings. Lecture Notes in Computer
Science, vol. 1861, pp. 568–582. Springer (2000). https://doi.org/10.1007/3-540-
44957-4_38

30. Krauss, A., Nipkow, T.: Proof pearl: Regular expression equivalence and relation
algebra. J. Autom. Reason. 49(1), 95–106 (2012). https://doi.org/10.1007/S10817-
011-9223-4

31. Leino, K.R.M.: Dafny power user, https://leino.science/dafny-power-user/
32. Leino, K.R.M.: Dafny: An automatic program verifier for functional correctness.

In: International conference on logic for programming artificial intelligence and
reasoning. pp. 348–370. Springer (2010)

18 S. Zetzsche and W. Różowski

33. Leino, K.R.M.: Type-parameter completion (June 2019),
https://leino.science/papers/krml270.html

34. Leino, K.R.M.: Iterating over a collection (Feb 2020),
https://leino.science/papers/krml275.html

35. Leino, K.R.M.: Type-parameter modes: variance and cardinality preservation (Aug
2021), https://leino.science/papers/krml280.html

36. Leino, K.R.M.: Program Proofs. MIT Press (2023)
37. Leino, K.R.M., Tristan, J.B.: Working with coinduction, extreme predicates, and

ordinals (Feb 2023), https://leino.science/papers/krml285.html
38. Moreira, N., Pereira, D., de Sousa, S.M.: Deciding kleene algebra terms equivalence

in coq. Journal of Logical and Algebraic Methods in Programming 84(3), 377–401
(2015)

39. Noble, J., Streader, D., Gariano, I.O., Samarakoon, M.: More programming than
programming: Teaching formal methods in a software engineering programme. In:
NASA Formal Methods Symposium. pp. 431–450. Springer (2022)

40. Owens, S., Reppy, J.H., Turon, A.: Regular-expression deriva-
tives re-examined. J. Funct. Program. 19(2), 173–190 (2009).
https://doi.org/10.1017/S0956796808007090

41. Paulson, L.C.: Isabelle: The next seven hundred theorem provers. In: 9th Inter-
national Conference on Automated Deduction, Argonne, Illinois, USA, May 23-
26, 1988, Proceedings. Lecture Notes in Computer Science, vol. 310, pp. 772–773.
Springer (1988). https://doi.org/10.1007/BFB0012891

42. Paulson, L.C.: A formalisation of finite automata using hereditarily finite sets.
In: Automated Deduction - CADE-25 - 25th International Conference on Au-
tomated Deduction, Berlin, Germany, August 1-7, 2015, Proceedings. Lec-
ture Notes in Computer Science, vol. 9195, pp. 231–245. Springer (2015).
https://doi.org/10.1007/978-3-319-21401-6_15

43. Rot, J., Bonsangue, M.M., Rutten, J.J.M.M.: Coinductive proof techniques for
language equivalence. In: Language and Automata Theory and Applications - 7th
International Conference, LATA 2013, Bilbao, Spain, April 2-5, 2013. Proceed-
ings. Lecture Notes in Computer Science, vol. 7810, pp. 480–492. Springer (2013).
https://doi.org/10.1007/978-3-642-37064-9_42

44. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theoretical Computer
Science 249(1), 3–80 (2000). https://doi.org/10.1016/S0304-3975(00)00056-6

45. Silva, A.: Kleene coalgebra. Ph.D. thesis, University of Nijmegen (2010)
46. Smolka, S., Foster, N., Hsu, J., Kappé, T., Kozen, D., Silva, A.: Guarded

kleene algebra with tests: verification of uninterpreted programs in nearly
linear time. Proc. ACM Program. Lang. 4(POPL), 61:1–61:28 (2020).
https://doi.org/10.1145/3371129

47. Traytel, D.: Formal languages, formally and coinductively. Logical Methods in
Computer Science 13 (2017)

48. Tristan, J.B., Leino, K.R.M.: Aws dafny training, https://dafny.org/teaching-
material/

49. Turi, D., Plotkin, G.D.: Towards a mathematical operational semantics. In: Pro-
ceedings, 12th Annual IEEE Symposium on Logic in Computer Science, Warsaw,
Poland, June 29 - July 2, 1997. pp. 280–291. IEEE Computer Society (1997).
https://doi.org/10.1109/LICS.1997.614955

50. Yang, Z., Wang, W., Casas, J., Cocchini, P., Yang, J.: Towards a correct-by-
construction fhe model. Cryptology ePrint Archive (2023)

Well-Behaved (Co)algebraic Semantics of Regular Expressions in Dafny 19

51. Zetzsche, S., Różowski, W.: Well-behaved (co)algebraic semantics of regular expres-
sions in dafny (Feb 2024), https://dafny.org/blog/assets/src/semantics-of-regular-
expressions/Archive.zip

