Canonical Algebraic Generators in Automata Learning

Stefan Jens Zetzsche $^{\rm 1}$

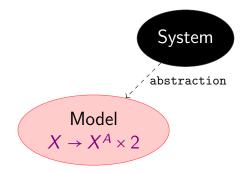
¹University College London

April 27, 2023

1

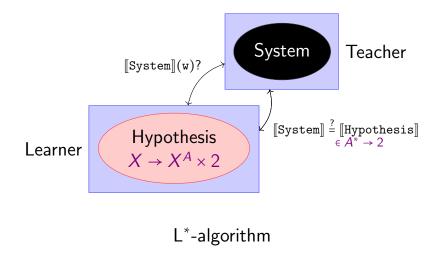
Introduction

Introduction: Automata Learning



 $\llbracket \mathsf{System} \rrbracket \stackrel{\cong}{=} \llbracket \mathsf{Model} \rrbracket \in A^* \to 2$

Introduction: Anguin's L* Algorithm



Angluin. Learning Regular Sets from Queries and Counterexamples (1987).

Introduction: An Example Run of L*

L^{*} for $\llbracket 1 + a \cdot a \cdot a^* \rrbracket \subseteq \{a\}^*$

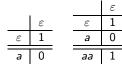
ε

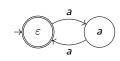
1

ε 1

0

1 1 1





	ε	а	aa	aaa
ε	1	0	1	1
а	0	1	1	1
аа	1	1	1	1

(d)

1	N	
12	1	
۱a		
× .	/	

ε

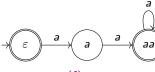
а

аа

aaa

(b)							
	а	aa	aaa				
	0	1	1				
	1	1	1				

(e)



Theorem If L^{*} is instantiated with $[\![\mathscr{X}]\!]$, then it terminates with the unique size-minimal DFA $m(\mathscr{X})$.

Angluin. Learning Regular Sets from Queries and Counterexamples (1987).

Introduction: Further Directions

Contributions

Learning Guarded Programs¹ (Chapter 3)

Canonical Automata² (Chapter 4)

Generating Monadic Closures³ (Chapter 5)

¹Accepted at MFPS 2022

²Accepted at MFPS 2021

³Submitted to CALCO 2023

Learning Guarded Programs (Chapter 3)

Canonical Automata (Chapter 4)

Generating Monadic Closures (Chapter 5)

Contributions: Learning Guarded Programs

Guarded Kleene Algebra with Tests (GKAT)

$$b, c \in \mathsf{BExp}_{\mathcal{T}} ::= 0 | 1 | t \in \mathcal{T} | b + c | b \cdot c | \overline{b}$$

$$e, f \in \mathsf{GExp}_{\Sigma,\mathcal{T}} ::= 0 | 1 | p \in \Sigma | e \cdot f | b \in \mathsf{BExp}_{\mathcal{T}} |$$

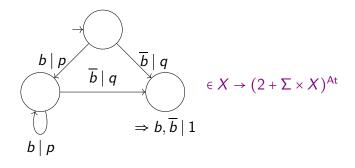
$$if b \text{ then } e \text{ else } f |$$

$$while b \text{ do } e |$$

Smolka, Foster, Hsu, Kappe, Kozen, and Silva. Guarded Kleene Algebra with Tests: Verification of Uninterpreted Programs in Nearly Linear Time (2019).

Contributions: Learning Guarded Programs

$$\llbracket (\texttt{while } b \texttt{ do } p) \cdot q \rrbracket = \{ \overline{b}qb, \overline{b}q\overline{b}, bp\overline{b}qb, bp\overline{b}q\overline{b}, ... \} \\ \in (\mathsf{At} \cdot \Sigma)^* \cdot \mathsf{At} \to 2 \\ \cong (\mathsf{At} \cdot \Sigma)^* \to 2^{\mathsf{At}} \end{cases}$$



Kozen and Tseng. The Böhm-Jacopini Theorem is False, Propositionally (2008).

- Minimization of GKAT automata
- Native GL* learning algorithm
- Correctness proof
- Complexity result
- GL^* is more efficient than L^*
- Implementation⁴ of L^* and GL^* in OCaml

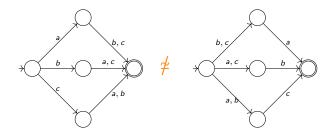
⁴https://github.com/zetzschest/gkat-automata-learning

Learning Guarded Programs (Chapter 3)

Canonical Automata (Chapter 4)

Generating Monadic Closures (Chapter 5)

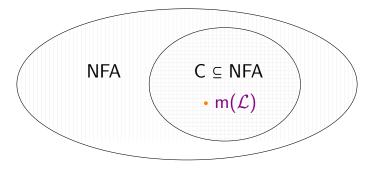
 $\{ab, ac, ba, bc, ca, cb\} \subseteq \{a, b, c\}^*$



Arnold, Dicky, and Nivat. A Note About Minimal Non-Deterministic Automata (1992).

Is there a canonical minimal NFA?

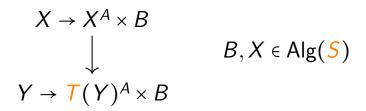
Canonical RFSA⁵, Distromaton⁶, Átomaton⁷, ...



⁵Denis, Lemay, and Terlutte. Residual Finite State Automata (2001)

⁶Myers, Adamek, Milius, and Urbat. Coalgebraic Constructions of Canonical Nondeterministic Automata (2015).

⁷Brzozowski and Tamm. Theory of Átomata (2014)



Rutten, Bonsangue, Bonchi, and Silva. Generalizing Determinization from Automata to Coalgebras (2013). Arbib and Manes. Fuzzy Machines in a Category (1975).

Contributions: Canonical Automata

Name	5	Т
Canonical RFSA ⁸	CSL	CSL
Canonical Nominal RFSA ⁹	Nom-CSL	Nom-CSL
Minimal Xor Automaton ¹⁰	\mathbb{Z}_2 -VSP	\mathbb{Z}_2 -VSP
Átomaton ¹¹	CABA	CSL
Distromaton ¹²	CDL	CSL
Xor-CABA Automaton ¹³	CABA	\mathbb{Z}_2 -VSP

- ⁸Example 4.4.2
- ⁹Example 4.4.3
- ¹⁰Example 4.4.4
- ¹¹Section 4.5.3
- ¹²Section 4.5.4
- ¹³Section 4.5.5

- Unifying category-theoretical framework
- Bialgebras, monads, distributive laws, generators
- Improve expressivity of previous work
- Uncover new canonical acceptor
- Abstract minimality result and size comparison

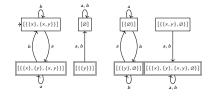
Learning Guarded Programs (Chapter 3)

Canonical Automata (Chapter 4)

Generating Monadic Closures (Chapter 5)

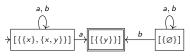
Contributions: Generating Monadic Closures

 $(a+b)^*a \subseteq \{a,b\}^*$



(a) Minimal Coalgebra

(b) Minimal Bialgebra



(c) Canonical Automaton

Step 1: (a) \rightarrow (b) Step 2: (b) \rightarrow (c)

Contributions: Generating Monadic Closures

Step 1: (a) \rightarrow (b)

$$\overline{(\cdot)}^{\mathbb{X}} : \mathsf{Sub}_{\mathscr{C}}(X) \to \mathsf{Sub}_{\mathscr{C}^{\mathsf{T}}}(\mathbb{X})$$

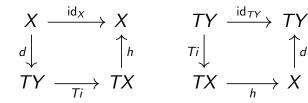
(a) Minimal Coalgebra

(b) Minimal Bialgebra

Theorem 5.2.1

Contributions: Generating Monadic Closures

Step 2: (b)
$$\rightarrow$$
 (c)



(b) Minimal Bialgebra

(c) Canonical Automaton

Definition 5.3.1

d

Step 1:

- Generalisation of algebraic closure
- Monad on subobjects in factorization system
- Morphisms between monads

Step 2:

- Abstract theory of generators and bases
- Generalisation of representation theory
- Bases for bialgebras and monoidal product

Learning Guarded Programs¹⁴ (Chapter 3)

Canonical Automata¹⁵ (Chapter 4)

Generating Monadic Closures¹⁶ (Chapter 5)

¹⁴Accepted at MFPS 2022

¹⁵Accepted at MFPS 2021

¹⁶Submitted to CALCO 2023

Thanks for listening!