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Introduction

2



Introduction: Automata Learning

System

Model
X → XA × 2

abstraction

System ⊇= Model ∈ A∗ → 2
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Introduction: Anguin’s L* Algorithm

Learner

Teacher

Hypothesis
X → XA × 2

System
System(w)?

System ?= Hypothesis
∈ A∗ → 2

L∗-algorithm

Angluin. Learning Regular Sets from Queries and Counterexamples (1987).
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Introduction: An Example Run of L∗

L∗ for 1 + a ⋅ a ⋅ a∗ ⊆ {a}∗

ε

ε 1

a 0

(a)

ε

ε 1

a 0

aa 1

(b)

ε a

a

a

(c)

ε a aa aaa

ε 1 0 1 1

a 0 1 1 1

aa 1 1 1 1

(d)
ε a aa aaa

ε 1 0 1 1

a 0 1 1 1

aa 1 1 1 1

aaa 1 1 1 1

(e)

ε a aa
a a

a

(f)
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Introduction: The Canonical DFA

Theorem
If L∗ is instantiated with X , then it terminates
with the unique size-minimal DFA m(X ).

Angluin. Learning Regular Sets from Queries and Counterexamples (1987).
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Introduction: Further Directions

Efficiency

Expressiveness

DFA
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Introduction: Further Directions

Efficiency

Expressiveness

DFA

Moore

Weighted

NFA

GKAT
...
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Contributions
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Contributions

Learning Guarded Programs1 (Chapter 3)

Canonical Automata2 (Chapter 4)

Generating Monadic Closures3 (Chapter 5)

1Accepted at MFPS 2022
2Accepted at MFPS 2021
3Submitted to CALCO 2023
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Contributions: Learning Guarded Programs

Learning Guarded Programs (Chapter 3)

Canonical Automata (Chapter 4)

Generating Monadic Closures (Chapter 5)
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Contributions: Learning Guarded Programs

Guarded Kleene Algebra with Tests (GKAT)

b, c ∈ BExpT ∶∶= 0  1  t ∈ T  b + c  b ⋅ c  b
e, f ∈ GExpΣ,T ∶∶= 0  1  p ∈ Σ  e ⋅ f  b ∈ BExpT 

if b then e else f 
while b do e 

Smolka, Foster, Hsu, Kappe, Kozen, and Silva. Guarded Kleene Algebra with Tests: Verification of
Uninterpreted Programs in Nearly Linear Time (2019).
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Contributions: Learning Guarded Programs

(while b do p) ⋅ q = {bqb,bqb,bpbqb,bpbqb, ...}
∈ (At ⋅Σ)∗ ⋅At→ 2

 (At ⋅Σ)∗ → 2At

⇒ b,b  1

b  p b  q

b  p

b  q ∈ X → (2 +Σ ×X )At

Kozen and Tseng. The Böhm-Jacopini Theorem is False, Propositionally (2008).
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Contributions: Learning Guarded Programs

 Minimization of GKAT automata

 Native GL∗ learning algorithm

 Correctness proof
 Complexity result

 GL∗ is more efficient than L∗

 Implementation4 of L∗ and GL∗ in OCaml

4https://github.com/zetzschest/gkat-automata-learning
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Contributions: Canonical Automata

Learning Guarded Programs (Chapter 3)

Canonical Automata (Chapter 4)

Generating Monadic Closures (Chapter 5)

15



Contributions: Canonical Automata

{ab, ac ,ba,bc , ca, cb} ⊆ {a,b, c}∗

a

b

c

b, c

a, c

a, b

≃
b, c

a, c

a, b

a

b

c

Arnold, Dicky, and Nivat. A Note About Minimal Non-Deterministic Automata (1992).
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Contributions: Canonical Automata

Is there a canonical minimal NFA?
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Contributions: Canonical Automata

Canonical RFSA5, Distromaton6, Átomaton7, ...

m(L)
NFA C ⊆ NFA

5Denis, Lemay, and Terlutte. Residual Finite State Automata (2001)
6Myers, Adamek, Milius, and Urbat. Coalgebraic Constructions of Canonical Nondeterministic Automata (2015).
7Brzozowski and Tamm. Theory of Átomata (2014)
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Contributions: Canonical Automata

X → X A × B

Y → T (Y )A × B

B ,X ∈ Alg(S)

Rutten, Bonsangue, Bonchi, and Silva. Generalizing Determinization from Automata to Coalgebras (2013).

Arbib and Manes. Fuzzy Machines in a Category (1975).
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Contributions: Canonical Automata

Name S T

Canonical RFSA8 CSL CSL

Canonical Nominal RFSA9 Nom-CSL Nom-CSL

Minimal Xor Automaton10 Z2-VSP Z2-VSP

Átomaton11 CABA CSL

Distromaton12 CDL CSL

Xor-CABA Automaton13 CABA Z2-VSP

8Example 4.4.2
9Example 4.4.3

10Example 4.4.4
11Section 4.5.3
12Section 4.5.4
13Section 4.5.5
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Contributions: Canonical Automata

 Unifying category-theoretical framework

 Bialgebras, monads, distributive laws, generators

 Improve expressivity of previous work

 Uncover new canonical acceptor

 Abstract minimality result and size comparison
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Contributions: Generating Monadic Closures

Learning Guarded Programs (Chapter 3)

Canonical Automata (Chapter 4)

Generating Monadic Closures (Chapter 5)
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Contributions: Generating Monadic Closures

(a + b)∗a ⊆ {a,b}∗

x

y

b

a

ab

(a) Minimal Coalgebra

[{{x},{x, y}}] [∅]

[{{x},{y},{x, y}}] [{{y}}]

[{∅}] [{{x, y},∅}]

[{{y},∅}] [{{x},{y},{x, y},∅}]

a, bb

a a, b

a

b b

a

a, ba

b a, b

(b) Minimal Bialgebra

[{{x},{x, y}}] [{{y}}] [{∅}]

a, b

a

a, b

b

(c) Canonical Automaton

Step 1: (a) → (b) Step 2: (b) → (c)
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Contributions: Generating Monadic Closures

Step 1: (a) → (b)

(⋅)
X
∶ SubC (X )→ SubC T (X)

(a) Minimal Coalgebra

(b) Minimal Bialgebra

Theorem 5.2.1
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Contributions: Generating Monadic Closures

Step 2: (b) → (c)

X X

TY TX

d

idX

Ti

h

TY TY

TX X

Ti

idTY

h

d

(b) Minimal Bialgebra

(c) Canonical Automaton

Definition 5.3.1
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Contributions: Generating Monadic Closures

Step 1:

 Generalisation of algebraic closure

 Monad on subobjects in factorization system

 Morphisms between monads

Step 2:

 Abstract theory of generators and bases

 Generalisation of representation theory

 Bases for bialgebras and monoidal product
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Summary

Learning Guarded Programs14 (Chapter 3)

Canonical Automata15 (Chapter 4)

Generating Monadic Closures16 (Chapter 5)

14Accepted at MFPS 2022
15Accepted at MFPS 2021
16Submitted to CALCO 2023
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The End

Thanks for listening!
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