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Introduction
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Introduction: Automata Learning

System

Model
X → XA × 2

abstraction

󰌻System󰌼 ⊇= 󰌻Model󰌼 ∈ A∗ → 2

3



Introduction: The Canonical DFA

Theorem
If L∗ is instantiated with 󰌻X 󰌼, then it terminates
with the unique size-minimal DFA m(X ).

Angluin. Learning Regular Sets from Queries and Counterexamples (1987).
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Introduction: The Canonical DFA

{ab, ac ,ba,bc , ca, cb} ⊆ {a,b, c}∗

a

b

c

b, c

a

a, c

b

c

a, b

a, b, c
a, b, c
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Introduction: Non-isomorphic Size-Minimal NFAs

{ab, ac ,ba,bc , ca, cb} ⊆ {a,b, c}∗

a

b

c

b, c

a, c

a, b

󳆋≃
b, c

a, c

a, b

a

b

c

Arnold, Dicky, and Nivat. A Note About Minimal Non-Deterministic Automata (1992).
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Introduction: Canonical Automata

Canonical RFSA1, Distromaton2, Átomaton3, ...

ML

NFA C ⊆ NFA

1Denis, Lemay, and Terlutte. Residual Finite State Automata (2001).
2Myers, Adamek, Milius, and Urbat. Coalgebraic Constructions of Canonical Nondeterministic Automata (2015).
3Brzozowski and Tamm. Theory of Átomata (2014).
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Introduction: General Canonical Automata

X → X A × B

Y → T (Y )A × B

B ,X ∈ Alg(S)

Zetzsche, Heerdt, Silva, and Sammartino. Canonical Automata via Distributive Law Homomorphisms (2021).

Rutten, Bonsangue, Bonchi, and Silva. Generalizing Determinization from Automata to Coalgebras (2013).

Arbib and Manes. Fuzzy Machines in a Category (1975).
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Introduction: General Canonical Automata

(a + b)∗a ⊆ {a,b}∗

x

y

b

a

ab

(a) Minimal Coalgebra

[{{x},{x, y}}] [∅]

[{{x},{y},{x, y}}] [{{y}}]

[{∅}] [{{x, y},∅}]

[{{y},∅}] [{{x},{y},{x, y},∅}]

a, bb

a a, b

a

b b

a

a, ba

b a, b

(b) Minimal Bialgebra

[{{x},{x, y}}] [{{y}}] [{∅}]

a, b

a

a, b

b

(c) Canonical Automaton

Step 1: (a) → (b) Step 2: (b) → (c)
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Contributions
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Contributions

Step 1

󲽨 Generalise closure of a subset of an algebra

󲽨 Functor between subobjects rel. to fact. system

󲽨 Extend functor to a monad

󲽨 Close subobjects that arise as image

󲽨 Recover minimal coalgebra to minimal bialgebra

Step 2

󲽨 Define category of algebras with generator/basis

󲽨 Adjunction to Eilenberg-Moore, monoidal

󲽨 Generalise matrix representation theory of vector spaces

󲽨 Bases for bialgebras, bases as coalgebras

󲽨 Finitary varieties, locally finitely presentable categories
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Step 1: Monadic Closures
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Contributions: Step 1: Monadic Closures

Step 1: (a) → (b)

TY ML X ∈ Coalg(F )T

Y ML X ∈ Coalg(F )

f ♯

(b)

f

(a)

(a) Minimal Coalgebra

(b) Minimal Bialgebra

For example, TY = PY , FX = 2 × XA, Y = A∗, X = 2A
∗
, and f (w)(v) = L(wv), where L ∶ A∗ → 2.

13



Contributions: Step 1: Monadic Closures

(E ,M )-Factorisation System for C

⋅ ⋅

⋅ ⋅

e

f g

m

⋅ ⋅

⋅ ⋅

e

f g
d

m

Each of E and M is closed under composition with isomorphisms.

Each morphism f in C can be factored as f = m ○ e, with e ∈ E and m ∈M .
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Contributions: Step 1: Monadic Closures

(E ,M )-Factorisation System for C T

TX TY

X Y

hX

Tf

hY

f

X im(f )

Y

e

f
m

TX T im(f )

im(f ) Y

e○hX

Te

hY ○Tm
him(f )

m

We assume that (T ∶C →C ,η, µ) preserves E .

Thorsten Wißmann. Minimality Notions via Factorization Systems and Examples (2022).
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Contributions: Step 1: Monadic Closures

(⋅)
X
∶ SubC (X )→ SubC T (X), mY ↦ mY

TY Y X ∈ C T

Y X ∈ C

m♯Y

mY

mY

We assume that (T ∶C →C ,η, µ) preserves E .

One can show that mim(f )
X = mim(f ♯) in Sub

CT (X).
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Contributions: Step 1: Monadic Closures

((⋅)
X
∶ SubC (X )→ SubC (X ), ηX, µX)

Y Y

Y X

1

eY ○ηY
ηXmY

mY

mY

T 2Y Y

Y X

e
Y
○TeY

eY ○µY

µX
mY

m
Y

mY

We assume that (T ∶C →C ,η, µ) preserves E .
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Contributions: Step 1: Monadic Closures

Compositionality

(SubC (A), (⋅)
A
) (SubC (B), (⋅)

B
)

(C ,T )

(UA,αA)

(f∗,αf )

(UB,αB)

We assume that (A ∶C →C ,ηA, µA) and (B ∶C →C ,ηB , µB) preserve E .

The functor f∗ ∶ Sub(A)→ Sub(B) is defined by f∗(mX ) = f ○mX and f∗(g) = g , where f ∶ A→ B ∈M .

The functor UX ∶ SubC (X)→C is defined by UX(mY ) = Y and UX(f ) = f .
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Step 2: Generating Monadic Closures
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Contributions: Step 2: Generating Monadic Closures

Step 2: (b) → (c)

X X

TY TX

d

idX

Ti

h

TY TY

TX X

Ti

idTY

h

d

(b) Minimal Bialgebra

(c) Canonical Automaton

(Y , i, d) is a generator (basis) for the T -algebra (X , h).
Arbib and Manes. Fuzzy Machines in a Category (1975).

Zetzsche, Heerdt, Silva, and Sammartino. Canonical Automata via Distributive Law Homomorphisms (2021).
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Contributions: Step 2: Generating Monadic Closures

(Y , i ,d) generates (X ,∨h) ≃ (X ,h) ∈ SetP

iff

x =
h

󱭾
y∈d(x)

i(y) forall x ∈ X
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Contributions: Step 2: Generating Monadic Closures

i ♯∶ expT(Y ,Fd ○ k ○ i)󲿋→ (X ,h, k)

Zetzsche, Heerdt, Silva, and Sammartino. Canonical Automata via Distributive Law Homomorphisms (2021).

Defining expT (X , k) ∶= (TX , µX , (FµX ○ λTX ) ○ Tk) and expT (f ) ∶= Tf yields a functor
expT ∶ Coalg(FT)→ Bialg(λ).

We assume that (Y , i, d) is a generator for the T -algebra (X , h).
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Contributions: Step 2: Generating Monadic Closures

Categorification

F ⊣ U ∶ GAlg(T )⇆ C T

GAlg(T ) is monoidal, if T is

The objects of GAlg(T) are tuples (Xα,α), where Xα is generated by α. A morphism

(f , p) ∶ (Xα,α)→ (Xβ ,β) is a tuple (f ∶ Xα → Xβ , p ∶ Yα → TYβ), s.t. dβ ○ f = p♯ ○ dα and i♯
β
○ p♯ = f ○ i♯α.

F ∶CT → GAlg(T) is defined by F(X) ∶= (X, (X , idX ,ηX )) and F(f ∶ X→ Y) ∶= (f ,ηY ○ f ).
U ∶ GAlg(T)→CT is defined by U(Xα,α) ∶= Xα and U(f , p) = f .
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Contributions: Step 2: Generating Monadic Closures

Kleisli Representation Theory

fαβ ∶= Yα
iα󲿋→ Xα

f󲿋→ Xβ

dβ󲿋→ TYβ

pαβ ∶= Xα
dα󲿋→ TYα

Tp󲿋→ T 2Yβ

µYβ󲿋→ TYβ

Tiβ󲿋→ TXβ

hβ󲿋→ Xβ

pαβ ∶ Xα → Xβ is a T -algebra homomorphism pαβ ∶ Xα → Xβ .

The operations f ↦ fαβ and p ↦ pαβ are mutually inverse.

Both operations are compositional, gβγ ⋅ fαβ = (g ○ f )αγ and qβγ ○ pαβ = (q ⋅ p)αγ .

There exist Kleisli isomorphisms p and q such that fα󰐞β󰐞 = q ⋅ fαβ ⋅ p.
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Contributions: Step 2: Generating Monadic Closures

Bases for Bialgebras

Y X

FY FX

i

kY k

Fi

X TY

FX FTY

d

k λY ○TkY

Fd

TY TX

X X

Ti

hd

idX

TX X

TY TY

h

dTi

idTY

Bialg(λ) 󰑔 Coalg(F)Tλ

If (Y , kY , i, d) is a generator for (X , h, k), then i♯ ∶ freeT (Y , kY )→ (X , h, k), where
freeT (X , k) ∶= (TX , µX ,λX ○ Tk) and freeT (f ) ∶= Tf . For bases, freeT (Y , kY ) = expT (Y ,Fd ○ k ○ i).

Let (Y , i, d) be a basis for (X , h), then (TY , (Fd ○ k ○ i)♯, i♯,ηTY ○ d) is a generator for (X , h, k).
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Contributions: Step 2: Generating Monadic Closures

Further Topics

󲽨 Bases as Coalgebras
󲽨 Comparison with previous work by Bart Jacobs

󲽨 Signatures, Equations, and Finitary Monads
󲽨 Characterise generators for algebras over finitary monads

󲽨 Lfp Categories, Finitely Generated Objects
󲽨 Algebra over T is finitely generated object of C T iff ...
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The End

Thanks For Listening!

https://arxiv.org/abs/2010.10223

https://fgh.xyz
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