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The classical powerset construction is a standard method converting a non-deterministic automaton
into a deterministic one recognising the same language. Recently, the powerset construction has been
lifted to a more general framework that converts an automaton with side-effects, given by a monad,
into a deterministic automaton accepting the same language. The resulting automaton has additional
algebraic properties, both in the state space and transition structure, inherited from the monad. In
this paper, we study the reverse construction and present a framework in which a deterministic au-
tomaton with additional algebraic structure over a given monad can be converted into an equivalent
succinct automaton with side-effects. Apart from recovering examples from the literature, such as
the canonical residual finite-state automaton and the átomaton, we discover a new canonical automa-
ton for a regular language by relating the free vector space monad over the two element field to the
neighbourhood monad. Finally, we show that every regular language satisfying a suitable property
parametric in two monads admits a size-minimal succinct acceptor.

1 Introduction

The existence of a unique minimal deterministic acceptor is an important property of regular languages.
Establishing a similar result for non-deterministic acceptors is significantly more difficult, but nonethe-
less of great practical importance, as non-deterministic automata (NFA) can be exponentially more suc-
cinct than deterministic ones (DFA). The main issue is that a regular language can be accepted by several
size-minimal NFAs that are not isomorphic. A number of sub-classes of non-deterministic automata
have been identified in the literature to tackle this issue, which all admit canonical representatives: the
átomaton [13], the canonical residual finite-state automaton (short canonical RFSA and also known as
jiromaton) [14], the minimal xor automaton [44], and the distromaton [34].

In this paper we provide a general categorical framework that unifies constructions of canonical non-
deterministic automata and unveils new ones. Our framework adopts the well-known representation of
side-effects via monads [33] to generalise non-determinism in automata. For instance, an NFA (without
initial states) can be represented as a pair ⟨X ,k⟩, where X is the set of states and k : X → 2×P(X)A

combines the function classifying each state as accepting or rejecting with the function giving the set
of next states for each input. The powerset forms a monad ⟨P,{−},µ⟩, where {−} creates singleton
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Figure 1: Generalised determinisation of automata with side-effects in a monad.

sets and µ takes the union of a set of sets. This allows describing the classical powerset construction,
converting an NFA into a DFA, in categorical terms [41] as depicted on the left of Figure 1, where
k♯ : P(X) → 2×P(X)A represents an equivalent DFA, obtained by taking the subsets of X as states,
and ⟨ε,δ ⟩ : 2A∗ → 2 × (2A∗

)A is the automaton of languages. There then exists a unique automaton
homomorphism obs, assigning a language semantics to each set of states.

As seen on the right of Figure 1 this perspective further enables a generalised determinisation con-
struction [41], where 2×(−)A is replaced by any (suitable) functor F describing the automaton structure,
and P by a monad T describing the automaton side-effects. Ω

ω−→ FΩ is the so-called final coalgebra,
providing a semantic universe that generalises the automaton of languages.

Our work starts from the observation that the deterministic automata resulting from this generalised
determinisation constructions have additional algebraic structure: the state space P(X) of the deter-
minised automaton defines a free complete join-semilattice (CSL) over X , and k♯ and obs are CSL homo-
morphisms. More generally, T X defines a (free) algebra for the monad T , and k♯ and obs are T -algebra
homomorphisms.

With this observation in mind, our question is: can we exploit the additional algebraic structure to
“reverse” these constructions? In other words, can we convert a deterministic automaton with additional
algebraic structure over a given monad to an equivalent succinct automaton with side-effects, possibly
over another monad? To answer this question, the paper makes the following contributions:

• We present a general categorical framework based on bialgebras and distributive law homomor-
phisms that allows deriving canonical representatives for a wide class of succinct automata with
side-effects in a monad.

• We strictly improve the expressivity of previous work [5, 20]: our framework instantiates not only
to well-known examples such as the canonical RFSA (Example 16) and the minimal xor automaton
(Example 18), but also includes the átomaton (Section 5.3) and the distromaton (Section 5.4),
which were not covered in [5, 20]. While other frameworks restrict themselves to the category
of sets [20], we are able to include canonical acceptors in other categories, such as the canonical
nominal RFSA (Example 17).

• We relate vector spaces over the unique two element field with complete atomic Boolean algebras
and consequently discover a previously unknown canonical mod-2 weighted acceptor for regular
languages—the minimal xor-CABA automaton (Section 5.5)—that in some sense is to the minimal
xor automaton what the átomaton is to the canonical RFSA (Figure 9).

• We introduce an abstract notion of closedness for succinct automata that is parametric in two
monads (Definition 30), and prove that every regular language satisfying a suitable property admits
a canonical size-minimal representative among closed acceptors (Theorem 32). By instantiating
the latter we subsume known minimality results for canonical automata, prove the xor-CABA
automaton minimal, and establish a size comparison between different acceptors (Section 6.1).
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Figure 2: The minimal DFA for L = (a+b)∗a.

2 Overview of the approach

In this section, we give an overview of the ideas of the paper through an example. We show how our
methodology allows recovering the construction of the átomaton for the regular language L = (a+b)∗a,
which consists of all words over A = {a,b} that end in a. For each step, we hint at how it is generalised
in our framework.

The classical construction of the átomaton for L consists in closing the residuals1 of L under all
Boolean operations, and then forming a non-deterministic automaton whose states are the atoms2 of the
ensuing complete atomic Boolean algebra (CABA)—that is, non-empty intersections of complemented
or uncomplemented residuals. In our categorical setting, this construction is obtained in several steps,
which we now describe.

2.1 Computing residuals

We first construct the minimal DFA accepting L as a coalgebra of type ML → 2× (ML )A . By the
well-known Myhill-Nerode theorem [35], ML is the set of residuals for L . The automaton is depicted
in Figure 2.

In our framework, we consider coalgebras over an arbitrary endofunctor F : C → C (F = 2× (−)A

and C = Set in this case). Minimal realisations, generalising minimal DFAs, exist for a wide class of
functors F and categories C , including all the examples in this paper.

2.2 Taking the Boolean closure

We close the minimal DFA under all Boolean operations, generating an equivalent deterministic automa-
ton that has additional algebraic structure: its state space is a CABA. This is achieved via a double pow-
erset construction—where sets of sets are interpreted as full disjunctive normal form—and the resulting
coalgebra is of type P2(ML )→ 2× (P2(ML ))A. Our construction relies on the so-called neighbour-
hood monad H , whose algebras are precisely CABAs, and yields a (free) bialgebra capturing both the
coalgebraic and the algebraic structure; the interplay of these two structures is captured via a distributive
law. We then minimise this DFA to identify Boolean expressions evaluating to the same language. As
desired, the resulting state space is precisely the Boolean closure of the residuals of L . Formally, we
obtain the minimal bialgebra for L depicted in Figure 3.

This step in our framework is generalised as closure of an F-coalgebra w.r.t (the algebraic structured
induced by) any monad S for which a suitable distributive law λ with the coalgebra endofunctor F exists.
The first step of the closure yields a free λ -bialgebra, comprised of both an F-coalgebra and an S-algebra
over the same state space. In a second step, minimisation is carried out in the category of λ -bialgebras,
which guarantees simultaneous preservation of the algebraic structure and of the language semantics.

1A language is a residual or left quotient of L ⊆ A∗, if it is of the form v−1L = {u ∈ A∗ | vu ∈ L } for some v ∈ A∗.
2A non-zero element a ∈ B is called atom, if for all x ∈ B such that x ≤ a one finds x = 0 or x = a.
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Figure 3: The minimal CABA-structured DFA for L = (a+b)∗a, where 1 ≡ [{{x},{x,y}}], 2 ≡ [ /0], 3 ≡
[{ /0}], 4 ≡ [{{x,y}, /0}], 5 ≡ [{{x},{y},{x,y}}], 6 ≡ [{{y}}], 7 ≡ [{{y}, /0}], 8 ≡ [{{x},{y},{x,y}, /0}].

2.3 Constructing the átomaton

This step is the key technical result of our paper. Atoms have the property that their Boolean closure
generates the entire CABA. In our framework, this property is generalised via the notion of generators
for algebras over a monad, which allows one to represent a bialgebra as an equivalent free bialgebra
over its generators, and hence to obtain succinct canonical representations (Proposition 14). In Section 4
we apply this result to obtain the canonical RFSA, the canonical nominal RFSA, and the minimal xor
automaton for a given regular language.

However, to recover the átomaton from the minimal CABA-structured DFA of the previous step, in
addition a subtle change of perspective is required. In fact, we are still working with the “wrong” side-
effect: the non-determinism of bialgebras so far is determined by H , whereas we are interested in an
NFA, whose non-determinism is captured by the powerset monad P . As is well-known, every element
of a CABA can be obtained as the join of the atoms below it. In other words, those atoms are also
generators of the underlying CSL, which is an algebra for P . We formally capture this idea as a map
between monads H → P . Crucially, we show that this map lifts to a distributive law homomorphism
and allows translating a bialgebra over H to a bialgebra over P , which can be represented as a free
bialgebra over atoms—the átomaton for L , which is shown in Figure 4.

In Section 5 we generalise this idea to the situation of two monads S and T involved in distributive
laws with the coalgebra endofunctor F . In particular, Corollary 21 is our free representation result,
spelling out a condition under which a bialgebra over S can be represented as a free bialgebra over T ,
and hence admits an equivalent succinct representation as an automaton with side-effects in T . Besides
the átomaton and the examples in Section 4, this construction allows us to capture the distromaton and a
newly discovered canonical acceptor that relates CABAs with vector spaces over the two element field.

3 Preliminaries

We assume basic knowledge of category theory (including functors, natural transformations, and ad-
junctions) [6]. In this section we recall the relevant notions for our technical development: coalgebras,
monads, algebras over a monad, distributive laws, and bialgebras.

Unpointed deterministic automata are basic examples of coalgebras in the category of sets and func-
tions: they are of the type k : X → FX , where FX = 2×XA and k pairs the final state function and
the transition function assigning a next state to each letter a ∈ A. Coalgebra has emerged as a unifying
framework to study infinite data types and state-based systems [39].
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Definition 1. (Coalgebra) A coalgebra for an endofunctor F in a category C is a tuple ⟨X ,k⟩ consisting
of an object X in C and a morphism k : X → FX .

Crucial in the theory of coalgebras is the notion of homomorphism, which allows to relate states
of coalgebras of the same type. A homomorphism f : ⟨X ,kX⟩ → ⟨Y,kY ⟩ between F-coalgebras is a
morphism f : X → Y satisfying kY ◦ f = F f ◦ kX . The category of F-coalgebras and homomorphisms is
denoted by Coalg(F). If it exists, the final object of this category is of particular importance.
Definition 2. (Final coalgebra) An F-coalgebra ⟨Ω,kΩ⟩ is final if every F-coalgebra ⟨X ,k⟩ admits a
unique homomorphism obs⟨X ,k⟩ : ⟨X ,k⟩ → ⟨Ω,kΩ⟩.

The unique final coalgebra homomorphism can be understood as the observable behaviour of a sys-
tem. For example, for the functor FX = 2×XA, the final F-coalgebra is the set of all languages P(A⋆)
and the final coalgebra homomorphism assigns to a state x of an unpointed deterministic automaton the
language in P(A∗) it accepts3 when given the initial state x.

In the context of computer science, monads have been introduced by Moggi as a general perspective
on exceptions, side-effects, non-determinism, and continuations [31–33].
Definition 3. (Monad) A monad on a category C is a tuple ⟨T,η ,µ⟩ consisting of an endofunctor
T : C → C and natural transformations η : idC ⇒ T and µ : T 2 ⇒ T satisfying µ ◦T µ = µ ◦ µT and
µ ◦ηT = idT = µ ◦T η .

By a slight abuse of notation we will refer to a monad simply by its underlying endofunctor.
Non-determinism is typically modelled by the powerset monad P , whose underlying endofunctor

P assigns to a set X the set of subsets PX ; whose unit maps an element x to the singleton ηX(x) = {x};
and whose multiplication flattens subsets by taking their union µX(Φ) =

⋃
U∈ΦU . Other monads that

play a role for us are the nominal powerset monad Pn [30], the neighbourhood monad H [24], the
monotone neighbourhood monad A [24], and the free vector space monad R over the unique two
element field [23]. The formal definitions are given in Definition 40.

The concept of a monad can also be seen as an alternative to Lawvere theory as a category theoretic
formulation of universal algebra [15, 29].
Definition 4. (Algebra over a monad) An algebra over a monad T on C is a tuple ⟨X ,h⟩ consisting of
an object X in C and a morphism h : T X → X satisfying h◦µX = h◦T h and h◦ηX = idX .

Every object admits a free algebra ⟨T X ,µX⟩. A homomorphism f : ⟨X ,hX⟩ → ⟨Y,hY ⟩ between T -
algebras is a morphism f : X → Y satisfying hY ◦T f = f ◦ hX . The category of T -algebras and homo-
morphisms is denoted by Alg(T ).
Example 5. • The category Alg(P) is isomorphic to the category of complete join-semi lattices

(CSL) and functions that preserve all joins [23].

• The category Alg(H ) is isomorphic to the category of complete atomic Boolean algebras (CABA)
and Boolean algebra homomorphisms that preserve all meets and all joins [24].

• The category Alg(A ) is isomorphic to the category of completely distributive lattices (CDL) and
functions that preserve all meets and all joins [24].

• The category Alg(R) is isomorphic to the category of vector spaces over the unique two element
field (Z2-Vect) and linear maps [23].

Distributive laws have originally occurred as a way to compose monads [7], but now also exist in
a wide range of other forms [42]. For our particular case it is sufficient to consider distributive laws
between a monad and an endofunctor, sometimes referred to as Eilenberg-Moore laws [26].

3For a deterministic automaton given by ε : X → 2 and δ : X → XA, acceptance is coinductively defined as a function
obs : X → 2A∗

by obs(x)(ε) = ε(x) and obs(x)(av) = obs(δ (x)(a))(v).
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Figure 4: The átomaton for L = (a+b)∗a.

Definition 6. (Distributive law) A distributive law between a monad T and an endofunctor F on C is a
natural transformation λ : T F ⇒ FT satisfying FηX = λX ◦ηFX and λX ◦µFX = FµX ◦λT X ◦T λX .

For example, every algebra h : T B → B for a set monad T induces a distributive law λ h between T
and F with FX = B×XA defined by

λ
h
X := (h× st)◦ ⟨T π1,T π2⟩, (1)

where st denotes the usual strength function4 [22]. We are particularly interested in canonical algebra
structures for the output set B= 2. For instance, the algebra structures defined by hP(ϕ)= hR(ϕ)=ϕ(1)
and hH (Φ) = hA (Φ) = Φ(id2), where we identify subsets with their characteristic functions. In these
cases we will abuse notation and write λ T instead of λ hT

.
Example 7. (Generalized determinisation [38]) Given a distributive law, one can model the determin-
isation of a system with dynamics in F and side-effects in T (sometimes referred to as succinct automa-
ton) by lifting a FT -coalgebra ⟨X ,k⟩ to the F-coalgebra ⟨T X ,k♯⟩, where k♯ := (FµX ◦λT X)◦T k. As one
verifies, the latter is in fact a T -algebra homomorphism of type k♯ : ⟨T X ,µX⟩ → ⟨FT X ,FµX ◦ λT X⟩.
For instance, if the distributive law λ is induced by the disjunctive P-algebra hP : P2 → 2 with
hP(ϕ) =

∨
u∈ϕ u = ϕ(1), the lifting k♯ is the DFA in CSL obtained from an NFA k via the classical

powerset construction.
The example above illustrates the concept of a bialgebra: the algebraic part (T X ,µX) and the coal-

gebraic part (T X ,k♯) of a lifted automaton are compatible along the distributive law λ .
Definition 8. (Bialgebra) A λ -bialgebra is a tuple ⟨X ,h,k⟩ consisting of a T -algebra ⟨X ,h⟩ and an
F-coalgebra ⟨X ,k⟩ satisfying Fh◦λX ◦T k = k ◦h.

A homomorphism between λ -bialgebras is a morphism between the underlying objects that is si-
multaneously a T -algebra homomorphism and an F-coalgebra homomorphism. The category of λ -
bialgebras and homomorphisms is denoted by Bialg(λ ). The existence of a final F-coalgebra is equiva-
lent to the existence of a final λ -bialgebra, as the next result shows.
Lemma 9. [25] Let ⟨Ω,kΩ⟩ be the final F-coalgebra, then ⟨Ω,hΩ,kΩ⟩ with hΩ := obs⟨T Ω,λΩ◦T kΘ⟩ is the
final λ -bialgebra satisfying obs⟨X ,h,k⟩ = obs⟨X ,k⟩. Conversely, if ⟨Ω,hΩ,kΩ⟩ is the final λ -bialgebra, then
⟨Ω,kΩ⟩ is the final F-coalgebra.

For instance, for the distributive law in Example 7, the final bialgebra is carried by the final coalgebra
P(A∗) and also has a free P-algebra structure that takes the union of languages.

The generalized determinisation procedure in Example 7 can now be rephrased in terms of a functor
between the category of coalgebras with dynamics in F and side-effects in T on the one side, and the
category of bialgebras on the other side.
Lemma 10. [25] Defining expT (⟨X ,k⟩) := ⟨T X ,µX ,(FµX ◦ λT X) ◦ T k⟩ and expT ( f ) := T f yields a
functor expT : Coalg(FT )→ Bialg(λ ).

We will sometimes refer to the functor which arises from the one above by precomposition with the
canonical embedding of F-coalgebras into FT -coalgebras.
Corollary 11. Defining freeT (⟨X ,k⟩) := ⟨T X ,µX ,λX ◦T k⟩ and freeT ( f ) := T f yields a functor freeT :
Coalg(F)→ Bialg(λ ) satisfying freeT (⟨X ,k⟩) = expT (⟨X ,FηX ◦ k⟩).

4For any two sets X ,A the strength function st : T (XA)→ (T X)A is defined by st(U)(a) = T (eva)(U), where eva( f ) = f (a).
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Figure 5: (a) The minimal CSL-structured DFA for L = (a+ b)∗a; (b) The canonical RFSA for L =
(a+b)∗a.

4 Succinct automata from bialgebras

In this section we introduce the foundations of our theoretical contributions. We begin with the notion of
a generator [5] for an algebra over a monad and demonstrate how it can be used to translate a bialgebra
into an equivalent free bialgebra. While the treatment is very general, we are particularly interested in the
case in which the bialgebra is given by a deterministic automaton that has additional algebraic structure
over a given monad, and the translation results in an automaton with side-effects in that monad. We will
demonstrate that the theory in this section instantiates to the canonical RFSA [14], the canonical nominal
RFSA [30], and the minimal xor automaton [44].

Definition 12. (Generator and basis) A generator for a T -algebra ⟨X ,h⟩ is a tuple ⟨Y, i,d⟩ consisting of
an object Y , a morphism i : Y → X , and a morphism d : X → TY such that (h◦Ti)◦d = idX . A generator
is called a basis if it additionally satisfies d ◦ (h◦Ti) = idTY .

A generator for an algebra is called a scoop by Arbib and Manes [5]. Here, we additionally introduce
the notion of a basis. Intuitively, one calls a set Y that is embedded into an algebraic structure X a gener-
ator for the latter if every element x in X admits a decomposition d(x) ∈ TY into a formal combination
of elements of Y that evaluates to x. If the decomposition is moreover unique, that is, h ◦Ti is not only
a surjection with right-inverse d, but a bijection with two-sided inverse d, then a generator is called a
basis. Every algebra is generated by itself using the generator ⟨X , idX ,ηX⟩, but not every algebra admits
a basis. We are particularly interested in classes of set-based algebras for which every algebra admits a
size-minimal generator, that is, no generator has a carrier of smaller size. In such a situation we will also
speak of canonical generators.

Example 13. • A tuple ⟨Y, i,d⟩ is a generator for a P-algebra L= ⟨X ,h⟩≃ ⟨X ,∨h⟩ iff x=
∨h

y∈d(x) i(y)
for all x ∈ X . Note that if Y ⊆ X is a subset, then i(y) = y for all y ∈ Y . If L satisfies the de-
scending chain condition, which is in particular the case if X is finite, then defining i(y) = y and
d(x) = {y ∈ J(L) | y ≤ x} turns the set of join-irreducibles5 J(L) into a size-minimal generator
⟨J(L), i,d⟩ for L, cf. Lemma 55.

• A tuple ⟨Y, i,d⟩ is a generator for a R-algebra V = ⟨X ,h⟩ ≃ ⟨X ,+h, ·h⟩ iff x = ∑
h
y∈Y d(x)(y) ·h i(y)

for all x ∈ X . As it is well-known that every vector space can be equipped with a basis, every
R-algebra V admits a basis. One can show that a basis is size-minimal, cf. Lemma 52.

It is enough to find generators for the underlying algebra of a bialgebra to derive an equivalent
free bialgebra. This is because the algebraic and coalgebraic components are tightly intertwined via a
distributive law.

Proposition 14. Let ⟨X ,h,k⟩ be a λ -bialgebra and let ⟨Y, i,d⟩ be a generator for the T -algebra ⟨X ,h⟩.
Then h◦Ti : expT (⟨Y,Fd ◦ k ◦ i⟩)→ ⟨X ,h,k⟩ is a λ -bialgebra homomorphism.

5A non-zero element x ∈ L is called join-irreducible if for all y,z ∈ L such that x = y∨ z one finds x = y or x = z.
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Figure 6: The orbit-finite representation of the canonical nominal RFSA for L = {vawau | v,w,u ∈
A∗,a ∈ A}.

Intuitively, the bialgebra ⟨X ,h,k⟩ is a deterministic automaton with additional algebraic structure in
the monad T and say initial state x ∈ X , while the equivalent free bialgebra is the determinisation of
the succinct automaton Fd ◦ k ◦ i : Y → FTY with side-effects in T and initial state d(x) ∈ TY . The
following result further observes that if one considers a basis for the underlying algebraic structure of
a bialgebra, rather than just a generator, then the equivalent free bialgebra is in fact isomorphic to the
original bialgebra.

Proposition 15. Let ⟨X ,h,k⟩ be a λ -bialgebra and let ⟨Y, i,d⟩ be a basis for the T -algebra ⟨X ,h⟩. Then
h◦Ti : expT (⟨Y,Fd ◦ k ◦ i⟩)→ ⟨X ,h,k⟩ is a λ -bialgebra isomorphism.

We conclude this section by illustrating how Proposition 14 can be used to construct the canonical
RFSA [14], the canonical nominal RFSA [30], and the minimal xor automaton [44] for a regular language
L over some alphabet A. All examples follow three analogous steps:

1. We construct the minimal6 pointed coalgebra ML for the (nominal) set endofunctor F = 2× (−)A

accepting L . For the case A= {a,b} and L =(a+b)∗a, the coalgebra ML is depicted in Figure 2.

2. We equip the former with additional algebraic structure in a monad T (which is related to F via a
canonically induced distributive law λ ) by generating the λ -bialgebra freeT (ML ). By identifying
semantically equivalent states we consequently derive the minimal7 (pointed) λ -bialgebra ⟨X ,h,k⟩
for L .

3. We identify canonical generators ⟨Y, i,d⟩ for ⟨X ,h⟩ and use Proposition 14 to derive an equivalent
succinct automaton ⟨Y,Fd ◦ k ◦ i⟩ with side-effects in T .

Example 16. (The canonical RFSA) Using the P-algebra structure hP : P2 → 2 with hP(ϕ) =
ϕ(1), we derive a canonical distributive law λP between F and the powerset monad P . The minimal
pointed λP -bialgebra for L = (a+b)∗a with its underlying CSL structure is depicted in Figure 5a; the
construction can be verified with the help of Lemma 47. The partially ordered state space L = {[ /0] ≤
[{x}] ≤ [{y}]} is necessarily finite, thus satisfies the descending chain condition, which turns the set of
join-irreducibles into a size-minimal generator ⟨J(L), i,d⟩ with i(y) = y and d(x) = {y ∈ J(L) | y ≤ x}, cf.
Lemma 55. In this case, the join-irreducibles are given by all non-zero states. The P-succinct automaton
consequently induced by Proposition 14 is depicted in Figure 5b; it can be recognised as the canonical
RFSA, cf. e.g. [34].

Example 17. (The canonical nominal RFSA) It is not hard to see that F extends to a functor on the
category of nominal sets; the usual strength function is equivariant (Lemma 46); and hPn : Pn2 → 2
with hPn(ϕ) = ϕ(1) defines a Pn-algebra, which induces a canonical distributive law λPn between F
and the nominal powerset monad Pn. As in [30], let L = {vawau | v,w,u ∈ A∗,a ∈ A}, then a−nL =

6Minimal in the sense that every state is reachable by an element of A∗ and no two different states observe the same language.
7Minimal in the sense that every state is reachable by an element of T (A∗) and no two different states observe the same

language.
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a−2L = A∗ for n ≥ 2, and v−1L = ∪a∈Aa−|v|aL , where |v|a denotes the number of a’s that occur in
v. In consequence, the nominal CSL underlying the minimal pointed λPn-bialgebra is generated by the
orbit-finite nominal set of join-irreducibles {L }∪{a−1L | a ∈ A}∪{A∗}, which is equipped with the
obvious Perm(A)-action and satisfies the inclusion L ⊆ a−1L ⊆ A∗. The orbit-finite representation of
the Pn-succinct automaton consequently induced by Proposition 14 is depicted in Figure 6.

Example 18.(The minimal xor automaton) The R-algebra structure hR : R2→ 2 with hR(ϕ) = ϕ(1)
induces a canonical distributive law λR between F and the free vector space monad R over the two
element field. The minimal pointed λR-bialgebra accepting L = (a+ b)∗a is depicted in Figure 7a
and coincides with the bialgebra freely generated by the F-coalgebra in Figure 2. The construction
can be verified using Lemma 50. The underlying vector space structure necessarily has a basis; we
choose the size-minimal generator ⟨Y, i,d⟩ with Y = {{x},{x,y}}, i(y) = y, and d( /0) = /0, d({x}) =
{{x}}, d({y}) = {{x}, {x,y}}, d({x,y}) = {{x,y}}, which is sufficient by Lemma 52. The R-succinct
automaton induced by Proposition 14 is depicted in Figure 7b; it can be recognised as the minimal xor
automaton, cf. e.g. [34].

5 Changing the type of succinct automata

This section contains a generalisation of the approach in Section 4. The extension is based on the ob-
servation that in the last section we implicitly considered two types of monads: (i) a monad S that
describes the additional algebraic structure of a given deterministic automaton; and (ii) a monad T that
captures the side-effects of the succinct automaton that is obtained by the generator-based translation. In
Proposition 14, the main result of the last section, the monads coincided, but to recover for instance the
átomaton [13] we will have to extend Proposition 14 to a situation where S and T can differ.

5.1 Relating distributive laws

We now introduce the main technical ingredient of our extension: distributive law homomorphisms. As
before, we present the theory on the level of arbitrary bialgebras, even though we will later focus on the
case where the coalgebraic dynamics are those of deterministic automata. Distributive law homomor-
phisms will allow us to shift a bialgebra over a monad S to an equivalent bialgebra over a monad T , for
which we can then find, analogous to Section 4, an equivalent succinct representation. The notion we
use is an instance of a much more general definition that allows to relate distributive laws on two differ-
ent categories. We restrict to the case where both distributive laws are given over the same behavioural
endofunctor F .

Definition 19. (Distributive law homomorphism [37, 45]) Let λ S : SF → FS and λ T : T F → FT
be distributive laws between monads S and T and an endofunctor F , respectively. A distributive law
homomorphism α : λ S → λ T consists of a natural transformation α : T ⇒ S satisfying µS ◦αS ◦T α =
α ◦µT , α ◦ηT = ηS and λ S ◦αF = Fα ◦λ T .

The above definition is such that α induces a functor between the categories of λ S- and λ T -bialgebras.

Lemma 20. [11, 28] Let α : λ S → λ T be a distributive law homomorphism. Then α⟨X ,h,k⟩ := ⟨X ,h◦
αX ,k⟩ and α( f ) := f defines a functor α : Bialg(λ S)→ Bialg(λ T ).

The next result is a straightforward consequence of Proposition 14, and may be strengthened to an
isomorphism in case one is given a basis instead of a generator, analogous to Proposition 15. It can be
seen as a road map to the approach we propose in this section.
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Figure 7: (a) The minimal Z2-Vect structured DFA for L = (a+b)∗a (freely-generated by the DFA in
Figure 2); (b) Up to the choice of a basis, the minimal xor automaton for L = (a+b)∗a.

Corollary 21. Let α : λ S → λ T be a homomorphism between distributive laws and ⟨X ,h,k⟩ a λ S-
bialgebra. If ⟨Y, i,d⟩ is a generator for the T -algebra ⟨X ,h ◦αX⟩, then (h ◦αX) ◦ Ti : expT (⟨Y,Fd ◦
k ◦ i⟩)→ ⟨X ,h◦αX ,k⟩ is a λ T -bialgebra homomorphism.

5.2 Deriving distributive law relations

We now turn to the procedure of deriving a distributive law homomorphism. In practice, coming up
with a natural transformation and proving that it lifts to a distributive law homomorphism can be quite
cumbersome.

Fortunately, for certain cases, there is a way to simplify things significantly. For instance, as the next
result shows, if, as in (1), the involved distributive laws are induced by algebra structures hS and hT for
an output set B, respectively, then one of the conditions is implied by a less convoluted constraint.

Lemma 22. Let α : T ⇒ S be a natural transformation satisfying hS ◦αB = hT , then λ S ◦αF = Fα ◦λ T .

The next result shows that for the neighbourhood monad there exists a family of canonical choices
of distributive law homomorphisms parametrised by Eilenberg-Moore algebra structures on the output
set B = 2. While it is well-known that such algebras induce a monad morphism, for instance in the
coalgebraic modal logic community [17, 27, 40], its commutativity with canonical distributive laws has
not been observed before. Moreover, we provide a new formalisation in terms of the strength function,
which allows the result to be lifted to strong monads and arbitrary output objects on other categories than
the one of sets and functions.

Proposition 23. Any algebra h : T 2 → 2 over a set monad T induces a homomorphism αh : λH → λ h

between distributive laws by αh
X := h2X ◦ st◦T (ηH

X ).

The rest of the section is concerned with using Proposition 23 and Corollary 21 to derive canonical
acceptors based on induced distributive law homomorphisms.

5.3 Example: The átomaton

We will now justify the previous informal construction of the átomaton. As hinted before, the átomaton
can be recovered by relating the neighbourhood monad H —whose algebras are complete atomic Boolean
algebras (CABAs)—and the powerset monad P . Formally, as a consequence of Proposition 23 we ob-
tain the following.

Corollary 24. Let αX : PX → H X satisfy αX(ϕ)(ψ) =
∨

x∈X ϕ(x)∧ψ(x), then α constitutes a dis-
tributive law homomorphism α : λH → λP .
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Figure 8: (a) The minimal CDL-structured DFA for L = (a+ b)∗a, where 1 ≡ [{{x},{x,y}}], 2 ≡ [ /0],
3 ≡ [{{x},{y},{x,y}}], 4 ≡ [{{x},{y},{x,y}, /0}]; (b) The distromaton for L = (a+b)∗a.

The next statement follows from a well-known Stone-type duality [43] representation theorem for
CABAs.

Lemma 25. Let αX : PX →H X satisfy αX(ϕ)(ψ) =
∨

x∈X ϕ(x)∧ψ(x). If B = ⟨X ,h⟩ is a H -algebra,
then ⟨At(B), i,d⟩ with i(a) = a and d(x) = {a ∈ At(B) | a ≤ x} is a basis for the P-algebra ⟨X ,h◦αX⟩.

The átomaton for the regular language L = (a+ b)∗a, for example, can now be obtained as fol-
lows. First, we construct the minimal pointed λH -bialgebra accepting L , which is depicted in Fig-
ure 3 together with its underlying CABA structure B. The construction can be verified with the help of
Lemma 48. Using the distributive law homomorphism α of Corollary 24, it can be translated into an
equivalent pointed λP -bialgebra with underlying CSL-structure α(B). By Lemma 25 the atoms At(B)
of B form a basis for α(B). In this case the atoms are given by [{{x},{x,y}}], [{{y}}] and [{ /0}]. The P-
succinct automaton consequently induced by Corollary 21 is depicted in Figure 4; it can be recognised
as the átomaton, cf. e.g. [34].

5.4 Example: The distromaton

We shall now use our framework to recover another canonical non-deterministic acceptor: the distroma-
ton [34]. As the name suggests, it can be constructed by relating the monotone neighbourhood monad
A —whose algebras are completely distributive lattices—and the powerset monad P . Formally, the
relationship can be established by the same natural transformation we used for the átomaton.

Corollary 26. Let αX : PX →A X satisfy αX(ϕ)(ψ) =
∨

x∈X ϕ(x)∧ψ(x), then α constitutes a distribu-
tive law homomorphism α : λA → λP .

The distromaton for the regular language L = (a+ b)∗a, for example, can now be obtained as fol-
lows. First, we construct the minimal pointed λA -bialgebra for L , depicted in Figure 8a with its under-
lying CDL structure h. The construction can be verified with the help of Lemma 49. Using the distribu-
tive law homomorphism α in Corollary 26, it can be translated into an equivalent pointed λP -bialgebra
with underlying CSL structure L = h ◦ αX . Its partially ordered state space [ /0] ≤ [{{x},{x,y}}] ≤
[{{x},{y},{x,y}}] ≤ [{{x},{y},{x,y}, /0}] is necessarily finite, which turns the set of join-irreducibles
into a size-minimal generator ⟨J(L), i,d⟩ for L, where i(y) = y and d(x) = {y ∈ J(L) | y ≤ x}. In this case,
the join-irreducibles are given by all non-zero states. The P-succinct automaton consequently induced
by Corollary 21 is depicted in Figure 8b and can be recognised as the distromaton, cf. [34].
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HP RA
átomaton minimal xor-CABA

canonical RFSA minimal xor

distromaton

Figure 9: The minimal xor-CABA automaton is to the minimal xor automaton what the átomaton is to
the canonical RFSA.

5.5 Example: The minimal xor-CABA automaton

We conclude this section by relating the neighbourhood monad H with the free vector space monad
R over the unique two element field Z2. In particular, we derive a new canonical succinct acceptor for
regular languages, which we call the minimal xor-CABA automaton.

Intuitively, the next result says that every CABA can be equipped with a symmetric difference like
operation that turns it into a vector space over the two element field.
Corollary 27. Let αX : RX →H X satisfy αX(ϕ)(ψ) =

⊕
x∈X ϕ(x) ·ψ(x), then α constitutes a distribu-

tive law homomorphism α : λH → λR .
Since every vector space admits a basis, above result leads to the definition of a new acceptor of

regular languages. Let α denote the homomorphism in Corollary 27 and F the endofunctor given by
FX = 2×XA.
Definition 28. (Minimal xor-CABA automaton) Let ⟨X ,h,k⟩ be the minimal x-pointed λH -bialgebra
accepting a regular language L ⊆A∗, and B= ⟨Y, i,d⟩ a basis for the R-algebra ⟨X ,h◦αX⟩. The minimal
xor-CABA automaton for L with respect to B is the d(x)-pointed Z2-weighted automaton Fd ◦ k ◦ i.

In Figure 9 it is indicated how the canonical acceptors of this paper, including the minimal xor-CABA
automaton, are based on relations between pairs of monads.

For the regular language L = (a+ b)∗a above definition instantiates as follows. First, as for the
átomaton, we construct the minimal pointed λH -bialgebra ⟨X ,h,k⟩ for L ; it is depicted in Figure 3. As
one easily verifies, the Z2-vector space ⟨X ,h ◦αX⟩ is induced by the symmetric difference operation ⊕
on subsets. Using the notation in Figure 3, we choose the basis ⟨Y, i,d⟩ with Y = {4,6,7,8}; i(y) = y;
and d(1) = 7⊕ 8, d(2) = /0, d(3) = 6⊕ 7, d(4) = 4, d(5) = 6⊕ 7⊕ 8, d(6) = 6, d(7) = 7, d(8) = 8.
The induced d(1) = 7⊕ 8-pointed R-succinct automaton accepting L , i.e. the minimal xor-CABA
automaton, is depicted in Figure 10.

6 Minimality

In this section we restrict ourselves to the category of (nominal) sets. We show that every language
satisfying a suitable property parametric in monads S and T admits a size-minimal succinct automaton
of type T accepting it. As a main result we obtain Theorem 32, which is a generalisation of parts
of [34, Theorem 4.8]. In Section 6.1 we instantiate the former to subsume known minimality results
for canonical automata, to prove the xor-CABA automaton minimal, and to establish a size-comparison
between different acceptors.

Given a distributive law homomorphism α : λ S → λ T , let ext : Coalg(FT )→ Coalg(FS) be the func-
tor given by ext(⟨X ,k⟩) = ⟨X ,FαX ◦ k⟩ and ext( f ) = f . Moreover, let expU : Coalg(FU)→ Bialg(λU)
for U ∈ {S,T} denote the functor introduced in Lemma 10.
Proposition 29. Let α : λ S → λ T be a distributive law homomorphism. Then αX : T X → SX underlies
a natural transformation α : expT ⇒ α ◦ expS ◦ ext between functors of type Coalg(FT )→ Bialg(λ T ).
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a,b

a
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Figure 10: The minimal xor-CABA automaton for L = (a+b)∗a.

In the above situation a T -succinct automaton admits two semantics, induced by lifting the former
either to a bialgebra over λ S or λ T . The next definition introduces a notion of closedness that captures
those cases in which the image of both semantics coincides.

Definition 30. (α-closed succinct automaton) Let α : λ S → λ T be a distributive law homomorphism.
We say that a T -succinct automaton X is α-closed if the unique diagonal below is an isomorphism:

expT (X ) im(obsexpT (X ))

im(obsα(expS(ext(X )))) Ω

obs

obs◦αX .

Next we show that succinct automata obtained from certain generators are α-closed.

Lemma 31. Let α : λ S → λ T be a distributive law homomorphism and ⟨X ,h,k⟩ a λ S-bialgebra. If
⟨Y, i,d⟩ is a generator for ⟨X ,h◦αX⟩, then ⟨Y,Fd ◦ k ◦ i⟩ is α-closed.

We are now able to state our main result, which is a generalisation of parts of [34, Theorem 4.8].

Theorem 32 (Minimal succinct automata). Given a language L ∈ Ω such that there exists a minimal
pointed λ S-bialgebra M accepting L and the underlying algebra of α(M) admits a size-minimal gen-
erator, there exists a pointed α-closed T -succinct automaton X accepting L such that:

• for any pointed α-closed T -succinct automaton Y accepting L we have that im(obsexpT (X )) ⊆
im(obsexpT (Y ));

• if im(obsexpT (X )) = im(obsexpT (Y )), then |X | ≤ |Y |, where X and Y are the carriers of X and Y ,
respectively.

For a T -succinct automaton X let us write obs†
X := obsexpT (X ) ◦ηT

X : X → Ω for a generalisation of
the semantics of non-deterministic automata. The next result provides an equivalent characterisation of
α-closedness in terms of obs† that will be particularly useful in Section 6.1.

Lemma 33. Let α : λ S → λ T be a distributive law homomorphism. For any T -succinct automaton X it
holds that im(obsexpT (X )) = im(h◦αΩ ◦T (obs†

X )) and im(obsα(expS(ext(X )))) = im(h◦S(obs†
X )), where

⟨Ω,h,k⟩ is the final λ S-bialgebra.

6.1 Applications to canonical automata

In this section we instantiate Theorem 32 to characterise a variety of canonical acceptors from the litera-
ture as size-minimal representatives among subclasses of α-closed succinct automata, i.e. those automata
whose images of the two semantics induced by α coincide. We begin with the canonical RFSA and the
minimal xor automaton, for which α is the identitity and α-closedness therefore is trivial.

In [14] the canonical RFSA for L has been characterised as size-minimal among those NFAs ac-
cepting L for which states accept a residual of L . More recently, it was shown that the class in fact
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can be extended to those NFAs accepting L for which states accept a union of residuals of L [34]. The
next result recovers the latter as a consequence of the second point in Theorem 32. We write Y for the
algebraic closure8 of a subset Y ⊆ X of some T -algebra X .

Corollary 34. The canonical RFSA for L is size-minimal among non-deterministic automata Y ac-

cepting L with im(obs†
Y )

CSL
⊆ Der(L )

CSL
.

The second condition in Theorem 32 is always satisfied for a reachable succinct automaton Y . Since
for Z2-weighted automata it is possible to find an equivalent reachable Z2-weighted automaton with less
or equally many states (which for NFA is not necessarily the case), the minimal xor automaton is minimal
among all Z2-weighted automata, as was already known from for instance [44].

Corollary 35. The minimal xor automaton for L is size-minimal among Z2-weighted automata accept-
ing L .

For the átomaton, the distromaton, and the minimal xor-CABA automaton the distributive law ho-
momorphism α in play is non-trivial; α-closedness translates to the below equalities between closures.
In all three cases it is possible to waive the inclusion induced by the second point in Theorem 32.

Corollary 36. The átomaton for L is size-minimal among non-deterministic automata Y accepting L

with im(obs†
Y )

CSL
= im(obs†

Y )
CABA

.

The above result can be shown to be similar to [34, Theorem 4.9], which characterises the átomaton
as size-minimal among non-deterministic automata whose accepted languages are closed under comple-
ment. The result below is very similar to a characterisation of the distromaton as size-minimal among
non-deterministic automata whose accepted languages are closed under intersection [34, Theorem 4.13].

Corollary 37. The distromaton for L is size-minimal among non-deterministic automata Y accepting

L with im(obs†
Y )

CSL
= im(obs†

Y )
CDL

.

The size-minimality result for the newly discovered minimal xor-CABA automaton is analogous to
the ones for the átomaton and the distromaton.

Corollary 38. The minimal xor-CABA automaton for L is size-minimal among Z2-weighted automata

Y accepting L with im(obs†
Y )

Z2-Vect
= im(obs†

Y )
CABA

.

We conclude with a size-comparison between acceptors that is parametric in the closure of deriva-
tives.

Corollary 39. • If Der(L )
Z2-Vect

= Der(L )
CABA

, then the minimal xor automaton and the minimal
xor-CABA automaton for L are of the same size.

• If Der(L )
CSL

= Der(L )
CDL

, then the canonical RFSA and the distromaton for L are of the same
size.

• If Der(L )
CSL

= Der(L )
CABA

, then the canonical RFSA and the átomaton for L are of the same
size.

8If Y = im( f ) for some morphism f with codomain ⟨X ,h⟩, the closure is given by the induced T -algebra structure on
im(h◦T f ).
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7 Related work

One of the main motivations for the present paper is provided by active learning algorithms for the
derivation of succinct state-based models [3]. A major challenge in learning non-deterministic models is
the lack of a canonical target acceptor for a given language [14]. The problem has been independently
approached for different variants of non-determinism, often with the idea of finding a subclass admitting
a unique representative [8, 16] such as e.g. the canonical RFSA, the minimal xor automaton, or the
átomaton.

A more general and unifying perspective on learning automata that may not have a canonical target
was given by Van Heerdt [18, 19, 21]. One of the central notions in this work is the concept of a scoop,
originally introduced by Arbib and Manes [5] and here referred to as a generator. The main contribution
in [21] is a general procedure to find irreducible sets of generators, which thus restricts the work to the
category of sets. In the present paper we generally work over arbitrary categories, although we assume
the existence of a minimal set-based generator in Theorem 32. Furthermore, the work of Van Heerdt has
no size-minimality results.

Closely related to the present paper is the work of Myers et al. [34], who present a coalgebraic con-
struction for canonical non-deterministic automata. They cover the canonical RFSA, the minimal xor
automaton, the átomaton, and the distromaton. The underlying idea in [34] for finding succinct repre-
sentations is similar to ours: first they build the minimal DFA for a regular language in a locally finite
variety, then they apply an equivalence between the category of finite algebras and a suitable category of
finite structured sets and relations. On the one hand, the category of finite algebras in a locally finite vari-
ety can be translated into our setting by considering a category of algebras over a monad preserving finite
sets. In fact, modulo this translation, many of the categories considered here already appear in [34], e.g.
vector spaces, Boolean algebras, complete join-semi lattices, and distributive lattices. On the other hand,
their construction seems to be restricted to the category of sets and non-deterministic automata, while
we work over arbitrary monads on arbitrary categories. Their work does not provide a general algorithm
to construct a succinct automaton, i.e., the specifics vary with the equivalences considered, while we
give a general definition and a soundness argument in Corollary 21. While Myers et al. give minimality
results for a wide range of acceptors, each proof follows case-specific arguments. In Theorem 32 we
provide a unifying minimality result for succinct automata that generalises parts of [34, Theorem 4.8]
and subsumes most of their results [34, Theorem 4.9, Theorem 4.10, Corollary 4.11, Theorem 4.13].

8 Discussion and future work

We have presented a general categorical framework based on bialgebras and distributive law homo-
morphisms for the derivation of canonical automata. The framework instantiates to a wide range of
well-known examples from the literature and allowed us to discover a previously unknown canonical
acceptor for regular languages. Finally, we presented a theorem that subsumes previously independently
proven minimality results for canonical acceptors, implied new characterisations, and allowed us to make
size-comparisons between canonical automata.

In the future, we would like to cover other examples, such as the canonical probabilistic RFSA
[16] and the canonical alternating RFSA [4, 8]. Probabilistic automata of the type in [16] are typically
modelled as T F-coalgebras instead of FT -coalgebras [25], and thus will need a shift in perspective.
For alternating RFSAs we expect a canonical form can be constructed in the spirit of this paper, from
generators for algebras over the neighbourhood monad, by interpreting the join-dense atoms of a CABA
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as a full meet of ground elements.
Generally, it would be valuable to have a more systematic treatment of the range of available monads

and distributive law homomorphisms [46], making use of the fact that distributive law homomorphisms
compose.

Further generalisation in another direction could be achieved by distributive laws between monads
and endofunctors on different categories. For instance, we expect that operations on automata as the
product can be captured by homomorphisms between distributive laws of such more general type.

Finally, we would like to lift existing double-reversal characterisations of the minimal DFA [12], the
átomaton [13], the distromaton [34], and the minimal xor automaton [44] to general canonical automata.
The work in [9, 10] gives a coalgebraic generalisation of Brzozowski’s algorithm based on dualities
between categories, but does not cover the cases we are interested in. The framework in [2] recovers the
átomaton as the result of a minimisation procedure, but does not consider other canonical acceptors.
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9 Definitions
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P f (ϕ)(y) =

∨
x∈ f−1(y) ϕ(x), ηP

X (x)(y) = [x = y], and µP
X (Φ)(x) =

∨
ϕ∈2X Φ(ϕ)∧ϕ(x).

• The neighbourhood monad ⟨H ,ηH ,µH ⟩ on the category of sets is defined by H X = 22X
,

H f (Φ)(ϕ) = Φ(ϕ ◦ f ), ηH
X (x)(ϕ) = ϕ(x), and µH

X (Ψ)(ϕ) = Ψ(ηH
2X (ϕ)).

• The monotone neighbourhood monad ⟨A ,ηA ,µA ⟩ on the category of sets is defined by A X =
⟨2,≤⟩⟨2X ,⊆⟩ and otherwise coincides with the neighbourhood monad.

• The free vector space monad over the unique two element field ⟨R,ηR ,µR⟩ on the category of
sets is defined by RX = 2X , R f (ϕ)(y) =

⊕
x∈ f−1(y) ϕ(x), where a⊕b := a+b mod 2, ηR

X (x)(y) =
[x = y], and µR

X (Φ)(x) =
⊕

ϕ∈2X Φ(ϕ) ·ϕ(x).
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• The nominal powerset monad ⟨Pn,η
Pn ,µPn⟩ on the category of (finitely-supported) nominal sets

is defined by PnX = {A⊆X |A finitely supported}, π.A := {π.a | a∈A}, and otherwise coincides
with P [36].

10 Proofs

Lemma 41. [22] Every algebra h : T B → B for a set monad T induces a distributive law λ h between T
and F with FX = B×XA by λ h

X := (h× st)◦ ⟨T π1,T π2⟩.

Proof. The statement is well-known [22], but a complete proof hard to find. The naturality of λ h essen-
tially follows from the naturality of the strength function. The equation involving the monad unit is a
consequence of

π1 ◦ (h× st)◦ ⟨T π1,T π2⟩ ◦ηB×XA

= h◦T π1 ◦ηB×XA (Def. π1)

= h◦ηB ◦π1 (Nat. η)

= π1 ◦ (B×η
A
X ) (h◦ηB = idB,Def. π1)

and

π2 ◦ (h× st)◦ ⟨T π1,T π2⟩ ◦ηB×XA

= st◦T π2 ◦ηB×XA (Def. π2)

= st◦ηXA ◦π2 (Nat. η)

= η
A
X ◦π2 (st◦ηXA = η

A
X )

= π2 ◦ (B×η
A
X ) (Def. π2).

Similarly, the equation involving the monad multiplication is a consequence of

π1 ◦ (B×µ
A
X )◦ (h× st)◦ ⟨T π1,T π2⟩ ◦T (h× st)◦T ⟨T π1,T π2⟩

= h◦T h◦T 2
π1 (Def. π1)

= h◦µB ◦T 2
π1 (h◦T h = h◦µB)

= h◦T π1 ◦µB×XA (Nat. µ)

= π1 ◦ (h× st)◦ ⟨T π1,T π2⟩ ◦µB×XA (Def. π1)

and

π2 ◦ (B×µ
A
X )◦ (h× st)◦ ⟨T π1,T π2⟩ ◦T (h× st)◦T ⟨T π1,T π2⟩

= µ
A
X ◦ st◦T (st)◦T 2

π2 (Def. π2)

= st◦µXA ◦T 2
π2 (µA

X ◦ st◦T (st) = st◦µXA)

= st◦T π2 ◦µB×XA (Nat. µ)

= π2 ◦ (h× st)◦ ⟨T π1,T π2⟩ ◦µB×XA (Def. π2).
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Lemma 42. The morphism hP : P2 → 2 satisfying ϕ 7→ ϕ(1) defines a P-algebra.

Proof. On the one hand we find

hP ◦µ
P
2 (Φ) = µ

P
2 (Φ)(1) (Def. hP)

=
∨

ϕ∈22

Φ(ϕ)∧ϕ(1) (Def. µ
P
2 )

=
∨

ϕ∈(hP )−1(1)

Φ(ϕ) (Def. hP)

= P(hP)(Φ)(1) (Def. P(hP))

= hP ◦P(hP)(Φ) (Def. hP),

and on the other hand we can deduce

hP ◦η
P
2 (x) = η

P
2 (x)(1) (Def. hP)

= [x = 1] (Def. η
P
2 )

= x (Def. [·]).

Lemma 43. The morphism hH : H 2 → 2 assigning Φ 7→ Φ(id2) defines a H -algebra.

Proof. Since ηH
22 (id2)(Φ) = Φ(id2) = hH (Φ) we find

hH ◦µ
H
2 (Ψ) = µ

H
2 (Ψ)(id2) (Def. hH )

= Ψ(ηH
22 (id2)) (Def. µ

H
2 )

= Ψ(id2 ◦hH ) (ηH
22 (id2) = hH )

= H (hH )(Ψ)(id2) (Def. H (hH ))

= hH ◦H (hH )(Ψ) (Def. hH ).

We further can deduce

hH ◦η
H
X (x) = η

H
X (x)(id2) (Def. hH )

= id2(x) (Def. η
H
X )

= x (Def. id2).

Lemma 44. The morphism hA : A 2 → 2 assigning Φ 7→ Φ(id2) defines a A -algebra.

Proof. Analogous to the proof of Lemma 43.

Lemma 45. The morphism hR : R2 → 2 satisfying ϕ 7→ ϕ(1) defines a R-algebra.

Proof. Analogous to the proof of Lemma 42.
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Proposition 14. Let ⟨X ,h,k⟩ be a λ -bialgebra and let ⟨Y, i,d⟩ be a generator for the T -algebra ⟨X ,h⟩.
Then h◦Ti : expT (⟨Y,Fd ◦ k ◦ i⟩)→ ⟨X ,h,k⟩ is a λ -bialgebra homomorphism.

Proof. By definition we have expT (⟨Y,Fd ◦k◦ i⟩) = ⟨TY,µY ,FµY ◦λTY ◦T (Fd ◦k◦ i)⟩. It is well-known
that h◦Ti is a homomorphism between the underlying T -algebra structures. It thus remains to show that
it is a F-coalgebra homomorphism. The latter follows from the commutativity of the diagram below:

TY T X X

T X

T FX T FX

T FTY T FT X

FT 2Y FT 2X FT X

FTY FT X FX FX

Ti

Ti

T k

h

k

T k

T Fd

idT FX

λX

λTY

T FTi

T Fh

FT 2i

FµY

FT h

FµX Fh

FTi Fh idFX

.

Proposition 15. Let ⟨X ,h,k⟩ be a λ -bialgebra and let ⟨Y, i,d⟩ be a basis for the T -algebra ⟨X ,h⟩. Then
h◦Ti : expT (⟨Y,Fd ◦ k ◦ i⟩)→ ⟨X ,h,k⟩ is a λ -bialgebra isomorphism.

Proof. By definition we have expT (⟨Y,Fd ◦ k ◦ i⟩) = ⟨TY,µY ,FµY ◦λTY ◦T (Fd ◦ k ◦ i)⟩. From Proposi-
tion 14 we know that h◦Ti is a λ -bialgebra homomorphism. By the definition of a basis, d is a two-sided
inverse to h◦Ti as ordinary morphism. It thus remains to show that d is a λ -bialgebra homomorphism.
The diagram below on the left shows that it is a T -algebra homomorphism, and the diagram on the right
below shows that it commutes with F-coalgebra structures:

T X T 2Y

T X T 2X

T X TY

X TY

T d

idT X
T 2i

µY

h

T h
µX

h

Ti
idTY

d

X FX

X FT X

TY T X T FX T FTY FT 2Y FTY

k

d

idX

Fd

k

FT d

Fh

Ti

h

T k T Fd

λX

λTY FµY

.

Lemma 46. The strength function st : Pn(XA)→ (PnX)A satisfying st(Φ)(a) = Pn(eva)(Φ) is equiv-
ariant.
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Proof. We first observe that for any a ∈ A,x ∈ X and π ∈ Perm(A) the mapping

{ϕ ∈ XA | ϕ(a) = x}→ {ϕ ∈ XA | ϕ(π−1.a) = π
−1.x} π 7→ π

−1.ϕ (2)

defines a bijection with inverse assignment ϕ 7→ π.ϕ . Note that the set 2 is equipped with the trivial
action. The statement thus follows from

(π.st(Φ))(a)(x) = π.(st(Φ)(π−1.a))(x) (Def. π.st(Φ))

= st(Φ)(π−1.a)(π−1.x) (Def. π.(st(Φ)(π−1.a)))

= Pn(evπ−1.a)(Φ)(π−1.x) (Def. st)

=
∨

ϕ∈ev−1
π−1 .a

(π−1.x)

Φ(ϕ) (Def. Pn(evπ−1.a))

=
∨

ϕ∈ev−1
a (x)

Φ(π−1.ϕ) (2)

=
∨

ϕ∈ev−1
a (x)

(π.Φ)(ϕ) (Def. π.Φ)

= Pn(eva)(π.Φ)(x) (Def. Pn(eva))

= st(π.Φ)(a)(x) (Def. st).

Lemma 47. Let ⟨PX ,µP
X ,⟨ε,δ ⟩⟩ := freeλP

(⟨X ,⟨ε,δ ⟩⟩). Then ε(ϕ) =
∨

y∈ε−1(1) ϕ(y) and δ a(ϕ)(x) =∨
y∈δ

−1
a (x) ϕ(y).

Proof. The first equality is a consequence of

ε(ϕ) = π1 ◦ (hP × st)◦ ⟨Pπ1,Pπ2⟩ ◦P(⟨ε,δ ⟩)(ϕ) (Def. ε)

= hP ◦P(ε)(ϕ) (Def. π1)

= P(ε)(ϕ)(1) (Def. hP)

=
∨

y∈ε−1(1)

ϕ(y) (Def. P(ε)).

For the second equality we observe

δ a(ϕ)(x) = δ (ϕ)(a)(x) (Def. δ a)

= π2 ◦ (hP × st)◦ ⟨Pπ1,Pπ2⟩ ◦P(⟨ε,δ ⟩)(ϕ)(a)(x) (Def. δ )

= st◦P(δ )(ϕ)(a)(x) (Def. π2)

= P(eva)(P(δ )(ϕ))(x) (Def. st)

= P(δa)(ϕ)(x) (Def. δa)

=
∨

y∈δ
−1
a (x)

ϕ(y) (Def. P(δa)).
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Lemma 48. Let ⟨H X ,µH
X ,⟨ε,δ ⟩⟩ := freeλH

(⟨X ,⟨ε,δ ⟩⟩). Then ε(Φ) = Φ(ε) and δ a(Φ)(ϕ) = Φ(ϕ ◦
δa).

Proof. The proof is analogous to the one of Lemma 47. The first equality is a consequence of

ε(Φ) = H (ε)(Φ)(id2) (Cf. proof of Lemma 47)

= Φ(id2 ◦ ε) (Def. H (ε))

= Φ(ε) (id2 ◦ ε = ε).

For the second equality we observe

δ a(Φ)(ϕ) = H (δa)(Φ)(ϕ) (Cf. proof of Lemma 47)

= Φ(ϕ ◦δa) (Def. H (δa)).

Lemma 49. Let ⟨A X ,µA
X ,⟨ε,δ ⟩⟩ := freeλA

(⟨X ,⟨ε,δ ⟩⟩). Then ε(Φ) = Φ(ε) and δ a(Φ)(ϕ) = Φ(ϕ ◦
δa).

Proof. Analogous to the proof of Lemma 48.

Lemma 50. Let ⟨RX ,µR
X ,⟨ε,δ ⟩⟩ := freeλR

(⟨X ,⟨ε,δ ⟩⟩). Then ε(ϕ) =
⊕

y∈ε−1(1) ϕ(y) and δ a(ϕ)(x) =⊕
y∈δ

−1
a (x) ϕ(y).

Proof. Analogous to the proof of Lemma 47.

Lemma 20. [11, 28] Let α : λ S → λ T be a distributive law homomorphism. Then α⟨X ,h,k⟩ := ⟨X ,h ◦
αX ,k⟩ and α( f ) := f defines a functor α : Bialg(λ S)→ Bialg(λ T ).

Proof. The statement is well-known [11, 28], but a complete proof difficult to find. We first show that
the definition is well-defined on objects. The commutativity of the two diagrams below shows that
⟨X ,h◦αX⟩ is a T -algebra:

T 2X T X

T SX S2X SX

T X SX X

µT
X

T αX αX

T h

αSX µS
X

Sh h

αX h

X X

SX

T X

1

ηS
X

ηT
X

h

αX

.

To establish that ⟨X ,h ◦αX ,k⟩ is a λ T -bialgebra it thus remains to observe the commutativity of the
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diagram on the left below:

T X T FX

FT X

SX SFX FSX

X FX

T k

αX

λ T
X

αFX

FαX

h

Sk λ S
X

Fh

k

T X TY

SX SY

X Y

αX

T f

αY

hX

S f

hY

f

.

Well-definedness on morphisms follows from the naturality of α , as seen on the right above. Composi-
tionality follows immediately from the definition of α on morphisms.

Lemma 51. Let α : λ S → λ T be a distributive law homomorphism. If ⟨Ω,h,k⟩ is the final λ S-bialgebra,
then ⟨Ω,h◦αΩ,k⟩ is the final λ T -bialgebra.

Proof. It is well-known that if ⟨Ω,h,k⟩ is the final λ S-bialgebra, then ⟨Ω,k⟩ is the final F-coalgebra
and h : SΩ → Ω is the unique homomorphism satisfying k ◦ h = Fh ◦ λ S

Ω
◦ Sk. Similarly, it is well-

known that ⟨Ω,h,k⟩ is the final λ T -bialgebra, where h : T Ω → Ω is the unique homomorphism satisfying
k ◦h = Fh◦λ T

Ω
◦T k. The statement thus follows from uniqueness:

T Ω SΩ Ω

T FΩ SFΩ

FT Ω FSΩ FΩ

T k

αΩ

Sk

h

k
αFΩ

λ T
Ω

λ S
Ω

FαΩ Fh

.

Corollary 21. Let α : λ S → λ T be a homomorphism between distributive laws and ⟨X ,h,k⟩ a λ S-
bialgebra. If ⟨Y, i,d⟩ is a generator for the T -algebra ⟨X ,h ◦αX⟩, then (h ◦αX) ◦ Ti : expT (⟨Y,Fd ◦
k ◦ i⟩)→ ⟨X ,h◦αX ,k⟩ is a λ T -bialgebra homomorphism.

Proof. By Lemma 20 the tuple ⟨X ,h◦αX ,k⟩ constitutes a λ T -bialgebra. The statement thus follows from
Proposition 14.

Lemma 22. Let α : T ⇒ S be a natural transformation satisfying hS ◦αB = hT , then λ S ◦αF = Fα ◦λ T .

Proof. We need to establish the commutativity of the following diagram:

T (XA ×B) S(XA ×B)

T (XA)×T B S(XA)×SB

(T X)A ×B (SX)A ×B

αXA×B

⟨T π1,T π2⟩ ⟨Sπ1,Sπ2⟩
αXA×αB

st×hT st×hS

(αX )
A×B

.
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The commutativity of the top square is a consequence of the naturality of α . Similarly, the commutativity
of the bottom square follows from the assumption and the naturality of α ,

st◦αXA(U)(a) = S(eva)◦αXA(U) (Def. st)

= αX ◦T (eva)(U) (Nat. α)

= α
A
X ◦ st(U)(a) (Def. st).

Proposition 23. Any algebra h : T 2 → 2 over a set monad T induces a homomorphism αh : λH → λ h

between distributive laws by αh
X := h2X ◦ st◦T (ηH

X ).

Proof. It is well-known that the strength operation is natural and satisfies the equalities (ηT
A )

B = st◦ηT
AB

and st◦µAB = µB
A ◦ st◦T st. It is also not hard to see that for functions f : A → B and g : C → D it holds

f D ◦Ag = Bg ◦ f C. We write f ∗ for A f and f∗ for f A, and omit components of natural transformations for
readability. The naturality of αhT

is a consequence of:

T X T (22X
) T (2)2X

22X

TY T (22Y
) T (2)2Y

22Y

T f

T ηH

T (( f ∗)∗)

st h∗

( f ∗)∗ ( f ∗)∗

T ηH st h∗

.

Using the equality 2ηH
2X ◦ηH

22X = id22X , the equation involving the monad multiplications is seen from:

T (22X
) T (2222X

) T (2)222X

2222X

T (22X
)

T (T (2)2X
) T 2(2)2X

T (2)2X

T 2(22X
)

T 2(X)

T (X) T (22X
) T (2)2X

22X

T (ηH )

1

st

T ((ηH )∗)

h∗

(ηH )∗

(ηH )∗

st

T (h∗)

st

µT
∗

T (h)∗

h∗

µT

T (st)

T 2(ηH )

µT

T (ηH ) st h∗

.
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The equation involving the monad units is established by:

X T X

22X
T (22X

)

T (2)2X

22X

ηT

ηH

ηH

T ηH

ηT
∗

ηT

1

st

h∗

.

To show that the equation involving the distributive laws holds, we use Lemma 22. That is, we note that
for any f it holds f ◦ eva = eva ◦ f∗, and moreover, hH = evid2 , before establishing:

T (2) T (222
) T (2)22

222

T (2)

2

h

T (ηH )

1 T (evid2 )

st h∗

evid2

hH

h

.

Corollary 24. Let αX : PX → H X satisfy αX(ϕ)(ψ) =
∨

x∈X ϕ(x)∧ψ(x), then α constitutes a dis-
tributive law homomorphism α : λH → λP .

Proof. We show that αhP
= α , the statement then follows from Proposition 23. We calculate

α
hP

X (ϕ)(ψ) = (hP)2X ◦ st◦P(ηH
X )(ϕ)(ψ) (Def. α

hP

X )

= st◦P(ηH
X )(ϕ)(ψ)(1) (Def. hP)

= P(evψ)(P(ηH
X )(ϕ))(1) (Def. st)

= P(evψ ◦η
H
X )(ϕ)(1) (P( f )◦P(g) = P( f ◦g))

= P(ψ)(ϕ)(1) (Def. ev, η
H
X )

=
∨

x∈ψ−1(1)

ϕ(x) (Def. P(ψ))

=
∨
x∈X

ϕ(x)∧ψ(x) (x ∈ ψ
−1(1))

= αX(ϕ)(ψ) (Def. αX).

Lemma 25. Let αX : PX →H X satisfy αX(ϕ)(ψ) =
∨

x∈X ϕ(x)∧ψ(x). If B = ⟨X ,h⟩ is a H -algebra,
then ⟨At(B), i,d⟩ with i(a) = a and d(x) = {a ∈ At(B) | a ≤ x} is a basis for the P-algebra ⟨X ,h◦αX⟩.
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Proof. Let K : Setop → Alg(H ) denote the comparison functor with K(X) = ⟨PX ,2ηH
X ⟩ induced by

the self-dual contravariant powerset adjunction. It is well-known that K has a quasi-inverse, namely the
functor At : Alg(H )→ Setop assigning to a complete atomic Boolean algebra B its atoms At(B) [43].
The equivalence d : B ≃ K ◦At(B) is given by d(x) = {a ∈ At(B) | a ≤ x}. The calculation below

2ηH
X ◦αPX(Φ)(x) = αPX(Φ)(ηH

X (x)) (Def. 2ηH
X )

=
∨

ϕ∈2X

Φ(ϕ)∧η
H
X (x)(ϕ) (Def. αPX)

=
∨

ϕ∈2X

Φ(ϕ)∧ϕ(x) (Def. η
H
X )

= µ
P
X (Φ)(x) (Def. µ

P
X )

shows that 2ηH
X ◦αPX = µP

X . By Corollary 24 the definition α(⟨X ,h⟩) = ⟨X ,h ◦αX⟩ yields a functor
α : Alg(H )→ Alg(P). We can thus deduce the following equivalence of P-algebras

⟨X ,h◦αX⟩= α(B) (Def. α)

≃ α ◦K ◦At(B) (id ≃ K ◦At)

= ⟨P(At(B)),2ηH
At(B) ◦αP(At(B))⟩ (Def. α ◦K ◦At)

= ⟨P(At(B)),µP
At(B)⟩ (2ηH

X ◦αPX = µ
P
X ).

Using the definition of a basis, the former immediately implies the claim.

Corollary 26. Let αX : PX →A X satisfy αX(ϕ)(ψ) =
∨

x∈X ϕ(x)∧ψ(x), then α constitutes a distribu-
tive law homomorphism α : λA → λP .

Proof. We observe that αX(ϕ) : ⟨2X ,⊆⟩ → ⟨2,≤⟩ is monotone for all ϕ ∈ 2X . Since the monotone
neighbourhood monad A and the neighbourhood monad H only differ on objects, the result follows
from Corollary 24.

Corollary 27. Let αX : RX →H X satisfy αX(ϕ)(ψ) =
⊕

x∈X ϕ(x) ·ψ(x), then α constitutes a distribu-
tive law homomorphism α : λH → λR .

Proof. Analogous to the proof of Corollary 24.

Proposition 29. Let α : λ S → λ T be a distributive law homomorphism. Then αX : T X → SX underlies
a natural transformation α : expT ⇒ α ◦ expS ◦ ext between functors of type Coalg(FT )→ Bialg(λ T ).

Proof. Given a T -succinct automaton X = ⟨X ,k⟩ the definitions imply

expT (X ) = ⟨T X ,µT
X ,Fµ

T
X ◦λ

T
T X ◦T k⟩

α ◦ expS ◦ ext(X ) = ⟨SX ,µS
X ◦αSX ,Fµ

S
X ◦λ

S
SX ◦SFαX ◦Sk⟩.
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By the definition of distributive law homomorphisms, the morphism αX commutes with the underlying
T -algebra structures. Its commutativity with the underlying F-coalgebra structures follows from:

T X T FT X FT 2X FT X

T FSX FT SX

SX SFT X SFSX FS2X FSX

αX

T k

αFT X

λ T
T X

T FαX

FµT
X

FT αX

FαX
λ T

SX

αFSX FαSX

Sk SFαX λ S
SX FµS

X

.

For above we use the naturality of α and λ T , and the definition of a distributivity law homomorphism.
The naturality of α as natural transformation α : expT ⇒ α ◦ expS ◦ ext follows immediately from the
naturality of α as natural transformation α : T ⇒ S.

Lemma 31. Let α : λ S → λ T be a distributive law homomorphism and ⟨X ,h,k⟩ a λ S-bialgebra. If
⟨Y, i,d⟩ is a generator for ⟨X ,h◦αX⟩, then ⟨Y,Fd ◦ k ◦ i⟩ is α-closed.

Proof. We write X := ⟨X ,h,k⟩, G := ⟨Y, i,d⟩, and gen(α(X),G) := ⟨Y,Fd ◦k◦ i⟩. The definitions imply

expT (gen(α(X),G)) = ⟨TY,µT
Y ,(Fd ◦ k ◦ i)♯⟩

α ◦ expS ◦ ext(gen(α(X),G)) = ⟨SY,µS
Y ◦αSY ,(F(αY ◦d)◦ k ◦ i)♯⟩.

Since G is a generator for ⟨X ,h◦αX⟩, Proposition 14 implies that (h◦αX)◦Ti : expT (gen(α(X),G))→
α(X) is a surjective λ T -bialgebra homomorphism. Naturality of α shows that G = ⟨Y, i,αY ◦ d⟩ is a
generator for ⟨X ,h⟩. Thus Proposition 14 implies that h ◦ Si : expS(gen(X,G))→ X is a surjective λ S-
bialgebra homomorphism. Applying α to the former shows that h◦Si : α ◦ expS ◦ ext(gen(α(X),G))→
α(X) is a surjective λ T -bialgebra homomorphism. The statement follows from the uniqueness of epi-
mono factorisations:

expT (gen(α(X),G)) im(obsexpT (gen(α(X),G)))

α ◦ expS ◦ ext(gen(α(X),G)) α(X) im(obsα(X))

im(obsα◦expS◦ext(gen(α(X),G))) Ω

obs

αY
(h◦αX )◦Ti

≃

obs

h◦Si obs

≃

.

Theorem 32. Given a language L ∈ Ω such that there exists a minimal pointed λ S-bialgebra M ac-
cepting L and the underlying algebra of α(M) admits a size-minimal generator, there exists a pointed
α-closed T -succinct automaton X accepting L such that:

• for any pointed α-closed T -succinct automaton Y accepting L we have that im(obsexpT (X )) ⊆
im(obsexpT (Y ));

• if im(obsexpT (X )) = im(obsexpT (Y )), then |X | ≤ |Y |, where X and Y are the carriers of X and Y ,
respectively.
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Proof. We use a similar notation as in the proof of Lemma 31. Let G = ⟨X , i,d⟩ be the size-minimal
generator for the underlying algebra of α(M), which we assume to be x-pointed. We define a d(x)-
pointed T -succinct automaton X := gen(α(M),G) , which by the existence of the pointed λ T -algebra
homomorphism i♯ : exp(X )→ α(M) accepts the language accepted by α(M). Because α only modifies
the algebraic part of a bialgebra and the final bialgebra homomorphism is induced by the underlying final
coalgebra homomorphism, the language accepted by α(M) is the language L accepted by M. From
Lemma 31 it follows that X is α-closed.

Consider any pointed α-closed T -succinct automaton Y accepting L . Then by minimality of M
there exists an injective λ S-bialgebra homomorphism j : M → im(obsexpS(ext(Y ))), which is also a λ T -
bialgebra homomorphism j : α(M) → im(obsα(expS(ext(Y )))), because the functor α is the identity on
morphisms, and only modifies the algebraic part of a bialgebra. Since Y is α-closed, the codomain
of j is isomorphic to im(obsexpT (Y )). Moreover, α(M) is isomorphic to im(obsexpT (X )) by the exis-
tence of a surjective homomorphism expT (X ) → α(M). The resulting λ T -bialgebra homomorphism
im(obsexpT (X )) → im(obsexpT (Y )) commutes with observability maps and thus must be an inclusion
map, so im(obsexpT (X ))⊆ im(obsexpT (Y )).

Suppose im(obsexpT (X ))= im(obsexpT (Y )), which implies that j is an isomorphism. Then there exists
a surjective λ T -bialgebra homomorphism expT (Y )→ α(M), which means that Y forms the carrier of a
generator for the underlying algebra of α(M). By the size-minimality of G we thus obtain |X | ≤ |Y |.

Lemma 52. Any basis for a R-algebra is a size-minimal generator.

Proof. Let ⟨Y, i,d⟩ be a basis for a R-algebra ⟨X ,h⟩, then d : X → RY is a bijection with inverse h◦Ri.
Let ⟨Y ′, i′,d′⟩ be any other generator for ⟨X ,h⟩. Then h◦Ri′ : RY ′ → X is a surjection, which shows that
d ◦h◦Ri′ : RY ′ → RY is a surjection. In consequence, |RY | ≤ |RY ′|, which implies |Y | ≤ |Y ′|, since
R−= 2−.

Lemma 53. Any basis for a P-algebra is a size-minimal generator.

Proof. Analogous to the proof of Lemma 52.

Corollary 54. Let αX : PX → H X satisfy αX(ϕ)(ψ) =
∨

x∈X ϕ(x)∧ψ(x). If B = ⟨X ,h⟩ is a H -
algebra, then ⟨At(B), i,d⟩ with i(a) = a and d(x) = {a ∈ At(B) | a ≤ x} is a size-minimal generator for
⟨X ,h◦αX⟩.

Proof. By Lemma 25 ⟨At(B), i,d⟩ is a basis for ⟨X ,h◦αX⟩, which by Lemma 53 implies size-minimality.

Lemma 55. For any finite P-algebra L = ⟨X ,h⟩ the join-irreducibles ⟨J(L), i,d⟩ with i(y) = y and
d(x) = {y ∈ J(L) | y ≤ x} constitute a size-minimal generator.

Proof. Since L is finite, it satisfies the descending chain condition (DCC), which in turn can be used to
show that the join-irreducibles constitute a generator as follows.

Assume there exists some x ∈ X with x ̸= i♯(d(x)). We build an infinite sequence (an) with ai > ai+1
and ai ̸= i♯(d(ai)), which contradicts the DCC. For the base case we define a0 := x. For any x ∈ X , the
property x ∈ J(L) immediately implies x = i♯(d(x)). Thus we can assume ai ̸∈ J(L). In consequence we
have ai = y∨ z for y,z ̸= ai, i.e ai > y and ai > z. Assume y = i♯(d(y)) and z = i♯(d(z)). Then

i♯(d(ai))≤ ai = y∨ z = i♯(d(y))∨ i♯(d(z)) = i♯(d(y)∨d(z))≤ i♯(d(ai)).
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It thus follows ai = i♯(d(ai)), which is a contradiction. Hence, w.l.o.g. assume y ̸= i♯(d(y)) and define
ai+1 := y.

Let ⟨Y, i′,d′⟩ be an arbitrary generator for L. For any a ∈ J(L) we have a =
∨h

y∈d′(a) i′(y). By the
definition of join-irreducibles there exists at least one ya ∈ d′(a) such that i′(ya) = a. One can thus
define a function f : J(L) → Y with f (a) = ya. It is not hard to see that f is injective, which implies
|J(L)| ≤ |Y |.

Lemma 56. Let X = ⟨X ,h,k⟩ be an observable λ S-bialgebra and G a generator for ⟨X ,h ◦αX⟩, then
im(obsexpT (gen(α(X),G)))≃ X.

Proof. By Proposition 14 there exists a surjective λ T -bialgebra homomorphism expT (gen(α(X),G))→
α(X). Since the final λ T -bialgebra homomorphism is induced by the underlying final F-coalgebra homo-
morphism and α(X)= ⟨X ,h◦αX ,k⟩, it holds obsα(X) = obsX. The statement follows from the uniqueness
of epi-mono factorizations and the definition of α(X):

expT (gen(α(X),G)) α(X)

im(obsexpT (gen(α(X),G))) Ω

obsα(X)=obsX≃ .

Lemma 57. Let X be a T -succinct automaton, then obs†
X = obs†

ext(X ).

Proof. Since by Proposition 29 the morphism αX : expT (X )→ α(expS(ext(X ))) is a λ T -bialgebra ho-
momorphism, we have by uniqueness obsα(expS(ext(X ))) ◦αX = obsexpT (X ). Since any final bialgebra ho-
momorphism is induced by the underlying final F-coalgebra homomorphism it holds obsα(expS(ext(X ))) =
obsexp(extS(X )), which thus implies

obsexpS(ext(X )) ◦αX = obsexpT (X ). (3)

The statement follows from

obs†
X = obsexpT (X ) ◦η

T
X (Def. obs†

X )

= obsexpS(ext(X )) ◦αX ◦η
T
X (3)

= obsexpS(ext(X )) ◦η
S
X (Def. distr. law hom.)

= obs†
ext(X ) (Def. obs†

ext(X )).

Lemma 33. Let α : λ S → λ T be a distributive law homomorphism. For any T -succinct automaton X it
holds that im(obsexpT (X )) = im(h◦αΩ ◦T (obs†

X )) and im(obsα(expS(ext(X )))) = im(h◦S(obs†
X )), where

⟨Ω,h,k⟩ is the final λ S-bialgebra.
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Proof. By Lemma 51 ⟨Ω,h◦αΩ,k⟩ is the final λ T -bialgebra. The first statement follows from

obsexpT (X ) = obsexpT (X ) ◦µ
T
X ◦T (ηT

X ) (Def. monad T )

= h◦αΩ ◦T (obsexpT (X ))◦T (ηT
X ) (Algebra hom. obsexpT (X ))

= h◦αΩ ◦T (obs†
X ) (Def. obs†

X ).

Similarly one shows that obsexpS(ext(X )) = h◦S(obs†
ext(X )). Since any final bialgebra homomorphism is

induced by the underlying final F-coalgebra homomorphism, it thus follows

im(obsα(expS(ext(X )))) = im(obsexpS(ext(X ))) (obsα(expS(ext(X ))) = obsexpS(ext(X )))

= im(h◦S(obs†
ext(X ))) (obsexpS(ext(X )) = h◦S(obs†

ext(X )))

= im(h◦S(obs†
X )) (Lemma 57).

Corollary 58. Let α : PX → H X satisfy αX(ϕ)(ψ) =
∨

x∈X ϕ(x)∧ψ(x). For any unpointed non-
deterministic automaton X it holds:

• im(obsexpP (X )) = im(obs†
X )

CSL
;

• im(obsα(expH (ext(X )))) = im(obs†
X )

CABA
.

Proof. The final λH -bialgebra is given by ⟨2A∗
,2ηH

A∗ ,⟨ε,δ ⟩⟩. In the proof of Lemma 25 it was shown
that 2ηH

X ◦αPX = µP
X . Thus it follows

im(obsexpP (X )) = im(2ηH
A∗ ◦α2A∗ ◦P(obs†

X )) (Lemma 33)

= im(µP
A∗ ◦P(obs†

X )) (2ηH
X ◦αPX = µ

P
X )

= {
⋃

u∈U

obs†
X (u) |U ⊆ X} (Def. P(−),µP)

= {obs†
X (x) | x ∈ X}

CSL
(Def. (−)

CSL
).

Similarly one computes

im(obsα(expH (ext(X )))) = im(2ηH
A∗ ◦H (obs†

X )) (Lemma 33)

= {{w ∈ A∗ | {x ∈ X | obs†
X (x)(w) = 1} ∈ Φ} | Φ ⊆ 2X} (Def. 2ηH

A∗ ,H (−))

= {
⋃

ϕ∈Φ

⋂
x∈ϕ

obs†
X (x)∩

⋂
x ̸∈ϕ

obs†
X (x)c | Φ ⊆ 2X} (Set equality)

= {obs†
X (x) | x ∈ X}

CABA
(Def. (−)

CABA
).

Corollary 59. Let α : PX → A X satisfy αX(ϕ)(ψ) =
∨

x∈X ϕ(x)∧ ψ(x). For any unpointed non-
deterministic automaton X it holds:

• im(obsexpP (X )) = im(obs†
X )

CSL
;
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• im(obsα(expA (ext(X )))) = im(obs†
X )

CDL
.

Proof. Analogous to the proof of Corollary 58.

Corollary 60. Let α : RX → H X satisfy αX(ϕ)(ψ) =
⊕

x∈X ϕ(x) · ψ(x). For any unpointed Z2-
weighted automaton X it holds:

• im(obsexpR(X )) = im(obs†
X )

Z2-Vect
;

• im(obsα(expH (ext(X )))) = im(obs†
X )

CABA
.

Proof. Analogous to the proof of Corollary 58.

Lemma 61. [1] Let A be a sub-lattice of a finite distributive lattice B, then |J(A)| ≤ |J(B)|.

Proof. For x ∈ J(B) define x̂ :=
∧
{y ∈ A | x ≤ y} ≥ x. To see that x̂ ∈ J(A), assume x̂ = y∨ z for y,z ∈ A.

By distributivity we have x = x̂∧x = (y∨ z)∧x = (y∧x)∨ (z∧x). Since x ∈ J(B), it thus follows w.l.o.g.
x = y∧ x, which implies x ≤ y. Consequently x̂ ≤ y ≤ x̂, i.e. x̂ = y. Let z ∈ J(A), then the join-density of
join-irreducibles implies

z =
∨
{x ∈ J(B) | x ≤ z}=

∨
{x̂ ∈ J(A) | x ∈ J(B) : x ≤ z}.

Since z is join-irreducible it follows z = x̂z for some xz ∈ J(B) with xz ≤ z. We thus find J(A) = {x̂ | x ∈
J(B)}, which implies the claim |J(A)| ≤ |J(B)|.

Corollary 62. Let A be a sub-algebra of a finite atomic Boolean algebra B. Then |At(A)| ≤ |At(B)|.

Proof. For atomic Boolean algebras, join-irreducibles and atoms coincide. Every Boolean algebra is in
particular a distributive lattice. The claim thus follows from Lemma 61.

Corollary 34. The canonical RFSA for L is size-minimal among non-deterministic automata Y ac-

cepting L with im(obs†
Y )

CSL
⊆ Der(L )

CSL
.

Proof. By Lemma 42 the morphism hP : P2 → 2 with hP(ϕ) = ϕ(1) is a P-algebra. As shown
in Lemma 41, it can used to derive a canonical distributive law λP . It is not hard to see that the
minimal pointed λP -bialgebra M accepting L exists and that its underlying state space is given by
the finite complete join-semi lattice Der(L )

CSL
. By Lemma 55 the join-irreducibles for M constitute

a size-minimal generator G. By definition, the canonical RFSA for L is given by X := gen(M,G).

From Lemma 56 it follows that im(obsexpP (X )) ≃ Der(L )
CSL

. As seen in e.g. Corollary 58, one

has im(obsexpP (Y )) = im(obs†
Y )

CSL
for any NFA Y . By choosing α as the identity, which implies

α-closedness for any NFA, the statement thus follows from Theorem 32.

Corollary 35. The minimal xor automaton for L is size-minimal among Z2-weighted automata accept-
ing L .
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Proof. Analogous to Corollary 34 one can show that the minimal xor automaton for L ⊆ A∗ is size-

minimal among all Z2-weighted automata Y accepting L such that im(obs†
Y )

Z2-Vect
⊆ Der(L )

Z2-Vect
.

Specific to this case are Lemma 45 and Lemma 52. It remains to observe that for any Z2-weighted
automaton X , one can find an equivalent Z2-weighted automaton Y with a state space of size not
greater than the one of X , such that above inclusion holds. The state space of Y can be chosen as a
basis for the underlying vector space of the epi-mono factorisation of the reachability map X (A∗) →

im(obs†
X )

Z2-Vect
.

Corollary 36. The átomaton for L is size-minimal among non-deterministic automata Y accepting L

with im(obs†
Y )

CSL
= im(obs†

Y )
CABA

.

Proof. Let α : λH → λP be the distributive law homomorphism introduced in Corollary 24. As shown
in Corollary 58, the equality in above claim captures α-closedness of Y . By construction there exists

a CSL-epimorphism obsexpP (Y ) : PY ↠ im(obs†
Y )

CSL
, which turns Y into a P-algebra generator for

B := im(obs†
Y )

CSL
= im(obs†

Y )
CABA

. As for CABAs join-irreducibles and atoms coincide, the size-

minimality of join-irreducibles in Lemma 55 thus implies |At(B)| ≤ |Y |. Since Der(L )
CABA

underlies

the minimal α-closed pointed λH -bialgebra accepting L , we have Der(L )
CABA ⊆ B by Theorem 32,

where we use Corollary 54 and Lemma 56. By Corollary 62, the former implies |At(Der(L )
CABA

)| ≤
|At(B)|. Consequently we can deduce |At(Der(L )

CABA
)| ≤ |Y |, which shows the claim.

Corollary 37. The distromaton for L is size-minimal among non-deterministic automata Y accepting

L with im(obs†
Y )

CSL
= im(obs†

Y )
CDL

.

Proof. Analogous to the proof of Corollary 36. Specific to this case are Lemma 42, Lemma 44, Corol-
lary 26, Lemma 55, Lemma 61, and Corollary 59.

Corollary 38. The minimal xor-CABA automaton for L is size-minimal among Z2-weighted automata

Y accepting L with im(obs†
Y )

Z2-Vect
= im(obs†

Y )
CABA

.

Proof. Analogous to the proof of Corollary 36. Specific to this case are Lemma 43, Lemma 45, Corol-
lary 27, Lemma 52, Corollary 60 and the observation that if A ⊆ B is a sub-vector space of a finite vector
space B, then dim(A)≤ dim(B).

Corollary 39. • If Der(L )
Z2-Vect

= Der(L )
CABA

, then the minimal xor automaton and the minimal
xor-CABA automaton for L are of the same size.

• If Der(L )
CSL

= Der(L )
CDL

, then the canonical RFSA and the distromaton for L are of the same
size.

• If Der(L )
CSL

= Der(L )
CABA

, then the canonical RFSA and the átomaton for L are of the same
size.
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Proof. • By Corollary 35 the minimal xor automaton X is of size not greater than the minimal
xor-CABA automaton Y . Conversely, we find

Der(L )
CABA

= Der(L )
Z2-Vect

(Assumption)

= im(obsexpR(X )) (Lemma 56)

= im(obs†
X )

Z2-Vect
(Corollary 60),

which can be used to show im(obs†
X )

Z2-Vect
= im(obs†

X )
CABA

. By Corollary 38 the latter implies
that Y is of size not greater than X , which shows the claim.

• Let X denote the canonical RFSA and Y the distromaton. On the one hand we find

Der(L )
CSL

= Der(L )
CDL

(Assumption)

= im(obsexpP (Y )) (Lemma 56)

= im(obs†
Y )

CSL
(Corollary 59),

which by Corollary 34 implies that X is of size not greater than Y . Conversely, we establish the
equality

Der(L )
CDL

= Der(L )
CSL

(Assumption)

= im(obsexpP (X )) (Lemma 56)

= im(obs†
X )

CSL
(Corollary 59),

which can be used to show im(obs†
X )

CSL
= im(obs†

X )
CDL

. By Corollary 37 the latter implies that
Y is of size not greater than X , which shows the claim.

• The proof for the átomaton is analogous to the proof for the distromaton in the previous point.
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