
Well-Behaved (Co)algebraic Semantics of
Regular Expressions in Dafny
Jan 12, 2024 • Stefan Zetzsche and Wojciech Różowski

Introduction
Regular expressions are one of the most ubiquitous formalisms of theoretical computer science. Commonly, they
are understood in terms of their denotational semantics, that is, through formal languages — the regular languages.
This view is inductive in nature: two primitives are equivalent if they are constructed in the same way.
Alternatively, regular expressions can be understood in terms of their operational semantics, that is, through finite
automata. This view is coinductive in nature: two primitives are equivalent if they are deconstructed in the same
way. It is implied by Kleene’s famous theorem that both views are equivalent: regular languages are precisely the
formal languages accepted by finite automata. In this blogpost, we utilise Dafny’s built-in inductive and
coinductive reasoning capabilities to show that the two semantics of regular expressions are well-behaved, in the
sense they are in fact one and the same, up to pointwise bisimulation.

Denotational Semantics
In this section, we define regular expressions and formal languages, introduce the concept of bisimilarity, formalise
the denotational semantics of regular expressions as a function from regular expressions to formal languages, and
prove that the latter is an algebra homomorphism.

Regular Expressions as Datatype

We define the set of regular expressions parametric in an alphabet A as an inductive datatype :

 datatype Exp<A> = Zero | One | Char(A) | Plus(Exp, Exp) | Comp(Exp, Exp) | Star(Exp)

Note that above, and later, we make use of Dafny's type parameter completion.

The definition captures that a regular expression is either a primitive character Char(a) , a non-deterministic
choice between two regular expressions Plus(e1, e2) , a sequential composition of two regular expressions
Comp(e1, e2) , a finite number of self-iterations Star(e) , or one of the constants Zero (the unit of Plus)

and One (the unit of Comp). At a higher level, the above defines Exp<A> as the smallest algebraic structure
that is equipped with two constants, contains all elements of type A , and is closed under two binary operations
and one unary operation.

Formal Languages as Codatatype

We define the set of formal languages parametric in an alphabet A as a coinductive codatatype :

 codatatype Lang<!A> = Alpha(eps: bool, delta: A -> Lang<A>)

Note that we used the type-parameter mode ! , which indicates that there could be strictly more values of type
Lang<A> than values of type A , for any type A , and that there is no subtype relation between Lang<A> and
Lang , for any two types A, B . A more detailed explanation of the topic can be found here.

To some, the choice above might seem odd at first sight. If you are familiar with the topic, you likely have
expected a formal language to be defined more concretely as a set of finite sequences (sometimes called words),
iset<seq<A>> . Rest assured, we agree — up to an appropriate notion of equality! Whereas you characterise

languages intrinsically, we treat them extrinsically, in terms of their universal property: it is well known that
iset<seq<A>> forms the greatest coalgebraic structure (think of a deterministic automaton without initial state)
S that is equipped with functions eps: S -> bool and delta: S → (A → S) . Indeed, for any set U of

finite sequences, we can verify whether U contains the empty sequence, U.eps == ([] in U) , and for any a:
A , we can transition to the set U.delta(a) == (iset s | [a] + s in U) . Here, we choose the more abstract
perspective on formal languages as it hides irrelevant specifics and thus allows us to write more elegant proofs.

An Algebra of Formal Languages

If you think of formal languages as the set of all sets of finite sequences, you will soon realise that languages admit
quite a bit of algebraic structure. For example, there exist two languages of distinct importance (can you already
guess which ones?), and one can obtain a new language by taking e.g. the union of two languages. In fact, if you
think about it for a bit longer, you’ll realise that formal languages admit exactly the same type of algebraic
structure as the one you’ve encountered when we defined regular expressions!

First, there exists the empty language Zero() that contains no words at all. Under the view above, we find
Zero().eps == false and Zero().delta(a) == Zero() , since the empty set does not contain the empty

sequence, and the derivative iset s | [a] + s in iset{} with respect to any a: A yields again the empty
set, respectively. We thus define:

 function Zero<A>(): Lang {

 Alpha(false, (a: A) => Zero())

 }

Using similar reasoning, we additionally derive the following definitions. In order, we formalise i) the language
One() that contains only the empty sequence; ii) for any a: A the language Singleton(a) that consists of

only the word [a] ; iii) the language Plus(L1, L2) which consists of the union of the languages L1 and L2 ;
iv) the language Comp(L1, L2) that consists of all possible concatenation of words in L1 and L2 ; and v) the
language Star(L) that consists of all finite compositions of L with itself. Our definitions match what is well-
known as Brzozowski derivatives.

Note that the {:abstemious} attribute above signals that a function does not need to unfold a codatatype
instance very far (perhaps just one destructor call) to prove a relevant property. Knowing this is the case can aid the
proofs of properties about the function. In this case, it is needed to convince Dafny that the corecursive calls in
Comp and Star are logically consistent.

Denotational Semantics as Induced Morphism

The denotational semantics of regular expressions can now be defined through induction, as a function
Denotational: Exp -> Lang , by making use of the operations on languages we have just defined:

 function Denotational<A(==)>(e: Exp): Lang {

 match e

 case Zero => Languages1.Zero()

 case One => Languages2.One()

 case Char(a) => Languages2.Singleton(a)

 case Plus(e1, e2) => Languages2.Plus(Denotational(e1), Denotational(e2))

 case Comp(e1, e2) => Languages2.Comp(Denotational(e1), Denotational(e2))

 case Star(e1) => Languages2.Star(Denotational(e1))

 }

Bisimilarity and Coinduction

Let us briefly introduce a notion of equality between formal languages that will be useful soon. A binary relation
R between languages is called a bisimulation, if for any two languages L1 , L2 related by R the following

holds: i) L1 contains the empty word iff L2 does; and ii) for any a: A , the derivatives L1.delta(a) and
L2.delta(a) are again related by R . As it turns out, the union of two bisimulations is again a bisimulation. In

consequence, one can combine all possible bisimulations into a single relation: the greatest bisimulation. In Dafny,
we can formalise the latter as a greatest predicate :

 greatest predicate Bisimilar<A(!new)>[nat](L1: Lang, L2: Lang) {

 && (L1.eps == L2.eps)

 && (forall a :: Bisimilar(L1.delta(a), L2.delta(a)))

 }

It is instructive to think of a greatest predicate as pure syntactic sugar. Indeed, under the hood, Dafny’s
compiler uses the body above to implicitly generate i) for any k: nat , a prefix predicate Bisimilar#[k](L1,
L2) that signifies that the languages L1 and L2 concur on the first k -unrollings of the definition above; and
ii) a predicate Bisimilar(L1, L2) that is true iff Bisimilar#[k](L1, L2) is true for all k: nat :

 /* Pseudo code for illustration purposes */

 predicate Bisimilar<A(!new)>(L1: Lang, L2: Lang) {

 forall k: nat :: Bisimilar#[k](L1, L2)

 }

 predicate Bisimilar#<A(!new)>[k: nat](L1: Lang, L2: Lang)

 decreases k

 {

 if k == 0 then

 true

 else

 && (L1.eps == L2.eps)

 && (forall a :: Bisimilar#[k-1](L1.delta(a), L2.delta(a)))

 }

Now that we have its definition in place, let us establish a property about bisimilarity, say, that it is a reflexive
relation. With the greatest lemma construct, Dafny is able to able to derive a proof completely on its own:

 greatest lemma BisimilarityIsReflexive<A(!new)>[nat](L: Lang)

 ensures Bisimilar(L, L)

 {}

Once again, it is instructive to think of a greatest lemma as pure syntactic sugar. Under the hood, Dafny’s
compiler uses the body of the greatest lemma to generate i) for any k: nat , a prefix lemma
BisimilarityIsReflexive#[k](L) that ensures the prefix predicate Bisimilar#[k](L, L) ; and ii) a

lemma BisimilarityIsReflexive(L) that ensures Bisimilar(L, L) by calling Bisimilar#[k](L, L)

for all k: nat :

 /* Pseudo code for illustration purposes */

 lemma BisimilarityIsReflexive<A(!new)>(L: Lang)

 ensures Bisimilar(L, L)

 {

 forall k: nat

 ensures Bisimilar#[k](L, L)

 {

 BisimilarityIsReflexive#[k](L);

 }

 }

 lemma BisimilarityIsReflexive#<A(!new)>[k: nat](L: Lang)

 ensures Bisimilar#[k](L, L)

 decreases k

 {

 if k == 0 {

 } else {

 forall a

 ensures Bisimilar#[k-1](L.delta(a), L.delta(a))

 {

 BisimilarityIsReflexive#[k-1](L.delta(a));

 }

 }

 }

If you are interested in the full details, we recommend taking a look at this note on coinduction, predicates, and
ordinals.

Denotational Semantics as Algebra Homomorphism

For a moment, consider the function var f: nat -> nat := (n: nat) => n + n which maps a natural
number to twice its value. The function f is structure-preserving: for any m: nat we have f(m * n) == m *
f(n) , i.e. f commutes with the (left-)multiplication of naturals. In this section, we are interested in functions of
type f: Exp -> Lang (more precisely, in Denotational: Exp -> Lang) that commute with the algebraic
structures we encountered in Regular Expressions as Datatype and An Algebra of Formal Languages, respectively.
We call such structure-preserving functions algebra homomorphisms. To define pointwise commutativity in this
context, we’ll have to be able to compare languages for equality. As you probably guessed, bisimilarity will do the
job:

 ghost predicate IsAlgebraHomomorphism<A(!new)>(f: Exp -> Lang) {

 forall e :: IsAlgebraHomomorphismPointwise(f, e)

 }

 ghost predicate IsAlgebraHomomorphismPointwise<A(!new)>(f: Exp -> Lang, e: Exp) {

 Bisimilar<A>(

 f(e),

 match e

 case Zero => Languages1.Zero()

 case One => Languages2.One()

 case Char(a) => Languages2.Singleton(a)

 case Plus(e1, e2) => Languages2.Plus(f(e1), f(e2))

 case Comp(e1, e2) => Languages2.Comp(f(e1), f(e2))

 case Star(e1) => Languages2.Star(f(e1))

)

 }

Note that we used the ghost modifier (which signals that an entity is meant for specification only, not for
compilation). A greatest predicate is always ghost, so IsAlgebraHomomorphismPointwise must be
declared ghost to call Bisimilar , and IsAlgebraHomomorphism must be declared ghost to call
IsAlgebraHomomorphismPointwise .

The proof that Denotational is an algebra homomorphism is straightforward: it essentially follows from
bisimilarity being reflexive:

 lemma DenotationalIsAlgebraHomomorphism<A(!new)>()

 ensures IsAlgebraHomomorphism<A>(Denotational)

 {

 forall e

 ensures IsAlgebraHomomorphismPointwise<A>(Denotational, e)

 {

 BisimilarityIsReflexive<A>(Denotational(e));

 }

 }

Operational Semantics
In this section, we provide an alternative perspective on the semantics of regular expressions. We equip the set of
regular expressions with a coalgebraic structure, formalise its operational semantics as a function from regular
expressions to formal languages, and prove that the latter is a coalgebra homomorphism.

A Coalgebra of Regular Expressions

In An Algebra of Formal Languages we equipped the set of formal languages with an algebraic structure that
resembles the one of regular expressions. Now, we are aiming for the reverse: we would like to equip the set of
regular expressions with a coalgebraic structure that resembles the one of formal languages. More concretely, we
would like to turn the set of regular expressions into a deterministic automaton (without initial state) in which a
state e is i) accepting iff Eps(e) == true and ii) transitions to a state Delta(e)(a) if given the input a:
A . Note how our definitions resemble the Brzozowski derivatives we previously encountered:

Operational Semantics as Induced Morphism

The operational semantics of regular expressions can now be defined via coinduction, as a function
Operational: Exp -> Lang , by making use of the coalgebraic structure on expressions we have just defined:

 function Operational<A(==)>(e: Exp): Lang {

 Alpha(Eps(e), (a: A) => Operational(Delta(e)(a)))

 }

Operational Semantics as Coalgebra Homomorphism

In Denotational Semantics as Algebra Homomorphism we defined algebra homomorphisms as functions f: Exp
-> Lang that commute with the algebraic structures of regular expressions and formal languages, respectively.
Analogously, let us now call a function of the same type a coalgebra homomorphism, if it commutes with the
coalgebraic structures of regular expressions and formal languages, respectively:

 ghost predicate IsCoalgebraHomomorphism<A(!new)>(f: Exp -> Lang) {

 && (forall e :: f(e).eps == Eps(e))

 && (forall e, a :: Bisimilar(f(e).delta(a), f(Delta(e)(a))))

 }

It is straightforward to prove that Operational is a coalgebra homomorphism: once again, the central argument
is that bisimilarity is a reflexive relation.

 lemma OperationalIsCoalgebraHomomorphism<A(!new)>()

 ensures IsCoalgebraHomomorphism<A>(Operational)

 {

 forall e, a

 ensures Bisimilar<A>(Operational(e).delta(a), Operational(Delta(e)(a)))

 {

 BisimilarityIsReflexive(Operational(e).delta(a));

 }

 }

Well-Behaved Semantics
So far, we have seen two dual approaches for assigning a formal language semantics to regular expressions:

Denotational : an algebra homomorphism obtained via induction
Operational : a coalgebra homomorphism obtained via coinduction

Next, we show that the denotational and operational semantics of regular expressions are well-behaved: they
constitute two sides of the same coin. First, we show that Denotational is also a coalgebra homomorphism, and
that coalgebra homomorphisms are unique up to bisimulation. We then deduce from the former that
Denotational and Operational coincide pointwise, up to bisimulation. Finally, we show that
Operational is also an algebra homomorphism.

Denotational Semantics as Coalgebra Homomorphism

In this section, we establish that Denotational not only commutes with the algebraic structures of regular
expressions and formal languages, but also with their coalgebraic structures:

 lemma DenotationalIsCoalgebraHomomorphism<A(!new)>()

 ensures IsCoalgebraHomomorphism<A>(Denotational)

The proof of the lemma is a bit more elaborate than the ones we have encountered so far. It can be divided into two
subproofs, both of which make use of induction. One of the subproofs is straightforward, the other, more difficult
one, again uses the reflexivity of bisimilarity, but also that the latter is a congruence relation with respect to Plus
and Comp :

 greatest lemma PlusCongruence<A(!new)>[nat](L1a: Lang, L1b: Lang, L2a: Lang, L2b: Lang)

 requires Bisimilar(L1a, L1b)

 requires Bisimilar(L2a, L2b)

 ensures Bisimilar(Plus(L1a, L2a), Plus(L1b, L2b))

 {}

 lemma CompCongruence<A(!new)>(L1a: Lang, L1b: Lang, L2a: Lang, L2b: Lang)

 requires Bisimilar(L1a, L1b)

 requires Bisimilar(L2a, L2b)

 ensures Bisimilar(Comp(L1a, L2a), Comp(L1b, L2b))

Dafny is able to prove PlusCongruence on its own, as it can take advantage of the syntactic sugaring of the
greatest lemma construct. For CompCongruence we have to put in a bit of manual work ourselves.

Coalgebra Homomorphisms Are Unique

The aim of this section is to show that, up to pointwise bisimilarity, there only exists one coalgebra homomorphism
of type Exp -> Lang :

 lemma UniqueCoalgebraHomomorphism<A(!new)>(f: Exp -> Lang, g: Exp -> Lang, e: Exp)

 requires IsCoalgebraHomomorphism(f)

 requires IsCoalgebraHomomorphism(g)

 ensures Bisimilar(f(e), g(e))

As is well-known, the statement may in fact be strengthened to: for any coalgebra C there exists exactly one
coalgebra homomorphism of type C -> Lang , up to pointwise bisimulation. For our purposes, the weaker
statement above will be sufficient. At the heart of the proof lies the observation that bisimilarity is transitive:

 greatest lemma BisimilarityIsTransitive<A>[nat](L1: Lang, L2: Lang, L3: Lang)

 requires Bisimilar(L1, L2) && Bisimilar(L2, L3)

 ensures Bisimilar(L1, L3)

 {}

In fact, in practice, we actually use a slightly more fine grained formalisation of transitivity, as is illustrated below
by the proof of UniqueCoalgebraHomomorphismHelperPointwise , which is used in the proof of
UniqueCoalgebraHomomorphism :

Denotational and Operational Semantics Are Bisimilar

We are done! From the previous results, we can immediately deduce that denotational and operational semantics
are the same, up to pointwise bisimilarity:

 lemma OperationalAndDenotationalAreBisimilar<A(!new)>(e: Exp)

 ensures Bisimilar<A>(Operational(e), Denotational(e))

 {

 OperationalIsCoalgebraHomomorphism<A>();

 DenotationalIsCoalgebraHomomorphism<A>();

 UniqueCoalgebraHomomorphism<A>(Operational, Denotational, e);

 }

Operational Semantics as Algebra Homomorphism

As a bonus, for the sake of symmetry, let us also prove that Operational is an algebra homomorphism. (We
already know that it is a coalgebra homomorphism, and that Denotational is both an algebra and coalgebra
homomorphism.)

 lemma OperationalIsAlgebraHomomorphism<A(!new)>()

 ensures IsAlgebraHomomorphism<A>(Operational)

The idea of the proof is to take advantage of Denotational being an algebra homomorphism, by translating its
properties to Operational via the lemma in Denotational and Operational Semantics Are Bisimilar. The
relevant new statements capture that bisimilarity is symmetric and a congruence with respect to the Star

operation:

 greatest lemma BisimilarityIsSymmetric<A(!new)>[nat](L1: Lang, L2: Lang)

 ensures Bisimilar(L1, L2) ==> Bisimilar(L2, L1)

 ensures Bisimilar(L1, L2) <== Bisimilar(L2, L1)

 {}

 lemma StarCongruence<A(!new)>(L1: Lang, L2: Lang)

 requires Bisimilar(L1, L2)

 ensures Bisimilar(Star(L1), Star(L2))

Conclusion
We have used Dafny’s built-in inductive and coinductive reasoning capabilities to define two language semantics
for regular expressions: denotational and operational semantics. Through a number of dualities — construction and
deconstruction, algebras and coalgebras, and congruence and bisimilarity — we have proven the semantics to be
two sides of the same coin. The blogpost is inspired by research in the field of Coalgebra, which was pioneered
by Rutten, Gumm, and others. The concept of well-behaved semantics goes back to Turi and Plotkin and was
adapted by Jacobs to the case of regular expressions. We heavily used automata theoretic constructions from the
1960s, originally investigated by Brzozowski (a more modern presentation can be found e.g. here). Our
presentation focused on the most important intuitive aspects of the proofs. To dive deep, please take a look at the
full Dafny source code, which is available here, here, and here.

Dafny Blog
blog@dafny.org

 dafny-lang News and education materials from the Dafny
maintainers and guests.

Dafny Blog

 function One<A>(): Lang {

 Alpha(true, (a: A) => Zero())

 }

 function Singleton<A(==)>(a: A): Lang {

 Alpha(false, (b: A) => if a == b then One() else Zero())

 }

 function {:abstemious} Plus<A>(L1: Lang, L2: Lang): Lang {

 Alpha(L1.eps || L2.eps, (a: A) => Plus(L1.delta(a), L2.delta(a)))

 }

 function {:abstemious} Comp<A>(L1: Lang, L2: Lang): Lang {

 Alpha(

 L1.eps && L2.eps,

 (a: A) => Plus(Comp(L1.delta(a), L2), Comp(if L1.eps then One() else Zero(), L2.delta(a)))

)

 }

 function Star<A>(L: Lang): Lang {

 Alpha(true, (a: A) => Comp(L.delta(a), Star(L)))

 }

 function Eps<A>(e: Exp): bool {

 match e

 case Zero => false

 case One => true

 case Char(a) => false

 case Plus(e1, e2) => Eps(e1) || Eps(e2)

 case Comp(e1, e2) => Eps(e1) && Eps(e2)

 case Star(e1) => true

 }

 function Delta<A(==)>(e: Exp): A -> Exp {

 (a: A) =>

 match e

 case Zero => Zero

 case One => Zero

 case Char(b) => if a == b then One else Zero

 case Plus(e1, e2) => Plus(Delta(e1)(a), Delta(e2)(a))

 case Comp(e1, e2) => Plus(Comp(Delta(e1)(a), e2), Comp(if Eps(e1) then One else Zero, Delta(e2)(a)))

 case Star(e1) => Comp(Delta(e1)(a), Star(e1))

 }

 lemma UniqueCoalgebraHomomorphismHelperPointwise<A(!new)>(k: nat, f: Exp -> Lang, g: Exp -> Lang, L1: Lang, L2: Lang)

 requires IsCoalgebraHomomorphism(f)

 requires IsCoalgebraHomomorphism(g)

 requires exists e :: Bisimilar#[k](L1, f(e)) && Bisimilar#[k](L2, g(e))

 ensures Bisimilar#[k](L1, L2)

 {

 var e :| Bisimilar#[k](L1, f(e)) && Bisimilar#[k](L2, g(e));

 if k != 0 {

 forall a

 ensures Bisimilar#[k-1](L1.delta(a), L2.delta(a))

 {

 BisimilarityIsTransitivePointwise(k-1, L1.delta(a), f(e).delta(a), f(Delta(e)(a)));

 BisimilarityIsTransitivePointwise(k-1, L2.delta(a), g(e).delta(a), g(Delta(e)(a)));

 UniqueCoalgebraHomomorphismHelperPointwise(k-1, f, g, L1.delta(a), L2.delta(a));

 }

 }

 }

 lemma BisimilarityIsTransitivePointwise<A(!new)>(k: nat, L1: Lang, L2: Lang, L3: Lang)

 ensures Bisimilar#[k](L1, L2) && Bisimilar#[k](L2, L3) ==> Bisimilar#[k](L1, L3)

 {

 if k != 0 {

 if Bisimilar#[k](L1, L2) && Bisimilar#[k](L2, L3) {

 assert Bisimilar#[k](L1, L3) by {

 forall a

 ensures Bisimilar#[k-1](L1.delta(a), L3.delta(a))

 {

 BisimilarityIsTransitivePointwise(k-1, L1.delta(a), L2.delta(a), L3.delta(a));

 }

 }

 }

 }

 }

Dafny Blog About

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Denotational_semantics
https://en.wikipedia.org/wiki/Regular_language
https://en.wikipedia.org/wiki/Operational_semantics
https://en.wikipedia.org/wiki/Finite-state_machine
http://www.dlsi.ua.es/~mlf/nnafmc/papers/kleene56representation.pdf
https://homepages.inf.ed.ac.uk/gdp/publications/Math_Op_Sem.pdf
https://en.wikipedia.org/wiki/Bisimulation
https://dafny.org/latest/DafnyRef/DafnyRef#sec-inductive-datatypes
https://leino.science/papers/krml270.html
https://dafny.org/latest/DafnyRef/DafnyRef#sec-coinductive-datatypes
https://dafny.org/latest/DafnyRef/DafnyRef#sec-type-parameter-variance
https://leino.science/papers/krml280.html
https://ir.cwi.nl/pub/28550/rutten.pdf
https://en.wikipedia.org/wiki/F-coalgebra
https://en.wikipedia.org/wiki/F-algebra
https://en.wikipedia.org/wiki/Brzozowski_derivative
https://dafny.org/latest/DafnyRef/DafnyRef#sec-abstemious
https://en.wikipedia.org/wiki/Bisimulation
https://dafny.org/latest/DafnyRef/DafnyRef#sec-copredicates
https://dafny.org/latest/DafnyRef/DafnyRef#514361-properties-of-prefix-predicates
https://en.wikipedia.org/wiki/Reflexive_relation
https://dafny.org/latest/DafnyRef/DafnyRef#sec-colemmas
https://dafny.org/latest/DafnyRef/DafnyRef#sec-prefix-lemmas
https://leino.science/papers/krml285.html
https://dafny.org/latest/DafnyRef/DafnyRef#sec-declaration-modifier
https://ir.cwi.nl/pub/28550/rutten.pdf
https://en.wikipedia.org/wiki/F-coalgebra
https://pdf.sciencedirectassets.com/271538/1-s2.0-S0304397500X01466/1-s2.0-S0304397500000566/main.pdf
https://www.researchgate.net/publication/2614339_Elements_Of_The_General_Theory_Of_Coalgebras
https://homepages.inf.ed.ac.uk/gdp/publications/Math_Op_Sem.pdf
https://link.springer.com/chapter/10.1007/11780274_20
https://dl.acm.org/doi/10.1145/321239.321249
https://alexandrasilva.org/files/thesis.pdf
https://dafny.org/blog/assets/src/semantics-of-regular-expressions/Languages.dfy
https://dafny.org/blog/assets/src/semantics-of-regular-expressions/Semantics.dfy
https://dafny.org/blog/assets/src/semantics-of-regular-expressions/Expressions.dfy
mailto:blog@dafny.org
https://github.com/dafny-lang
https://dafny.org/blog/
https://dafny.org/blog/about/

