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Introduction
Coding interviews are notoriously difficult, for many reasons. One may argue (half-seriously) that one
issue is that it often is not entirely clear what the actual problem is that ought to be solved, and
another is that whether a solution is correct or not is often a matter of negotiation rather than subject
to a formal proof. In fact, it is not uncommon to find solutions to interview problems online that after
close inspection turn out to be simply wrong. This blog post may be understood as an argument for
spending less time on problems whose solutions require smart ideas (that one may or may not come
up with on the spot), but instead focus on problems with simple solutions, but non-trivial correctness
proofs. At its heart, however, this blogpost is really just a gentle introduction to Dafny, which allows us
to write, in a very readable way, the specifications of a problem, its solution, and proof of correctness
within the same language.

The Problem
The coding interview problem is described to us in natural language. As we would like to verify the
correctness of a potential solution, we need to translate the problem into a formal language.

The Problem in Natural Language

Given a sequence of arbitrary type, return the set that contains all its unique permutations.

The Problem in Formal Language

Intuitively, a permutation of a sequence is a second sequence that contains the same elements as the
first one, but potentially in a different order. In other words, after one forgets about the order of the
elements, both structures are identical. For example, the sequence [1,0,0]  is a permutation of the
sequence [0,0,1] . In Dafny, a sequence without an order can be modeled by the type multiset .
Multisets are generalisations of sets in the way that they can contain elements multiple times, instead
of just once. The multiset that models both of the above sequences is multiset{0,0,1}  . Note that
this multiset is different from the set set{0,0,1} == set{0,1} . You may think of multisets that
contain elements of type T  as functions f: T -> nat  , where f(t)  specifies how many
occurrences of the element t  the multiset contains. In Dafny, the conversion of a sequence s  into a
multiset is denoted by multiset(s)  . We define a sequence p  to be a permutation of a sequence
s  (both with elements of a generic type T ) if they satisfy the following predicate:

predicate IsPermutationOf<T(==)>(p: seq<T>, s: seq<T>) {
  multiset(p) == multiset(s)
}

Note that a predicate is a function that returns a bool ean — that is, either true  or false . To
compare two multisets for equality, we need to be able to compare their elements for equality. For this
reason, we require the type T  to have the characteristic (==) . Given above, the naive definition of
the set that contains all permutations of a sequence s  is immediate:

ghost function AllPermutationsOf<T(!new)>(s: seq<T>): iset<seq<T>> {
  iset p | IsPermutationOf(p, s)
}

Note that AllPermutationsOf  returns a potentially infinite set of sequences. While this is not
wrong, it’s an over-approximation. Think of above set comprehension as a mathematical abstraction.
Establishing its finiteness via a constructive argument will be part of a potential solution. This view is
witnessed by the use of the keyword ghost  , which implies that the function won’t be compiled, as
it’s meant to be used for static verification purposes only. We restrict ourselves to types T  with the
characteristic (!new) , because a set comprehension involved in a function definition is not allowed
to depend on the set of allocated references.

We are now able to formally state the problem task: Define the body of a function with the signature

function CalculateAllPermutationsOf<T(==)>(s: seq<T>): set<seq<T>>

and show that it is correct, in the sense that there exists a proof for the lemma

lemma Correctness<T(!new)>(s: seq<T>)
  ensures (iset p | p in CalculateAllPermutationsOf(s)) == AllPermutationsOf(s)

The Proposed Solution
There are many potential solutions to the problem. Here, we propose a purely functional approach that
defines the set of all unique permutations of a sequence recursively. In the base case, when the
sequence s  has length zero, we simply return the singleton set that contains s . In the case that s
is of length greater than zero, we first recursively calculate the set of all the permutations of the
subsequence of s  that starts at the second element, before inserting, via a separate function
InsertAt , the first element of s  into all the permutations in that set, at every possible position.

function CalculateAllPermutationsOf<T(==)>(s: seq<T>): set<seq<T>> {
  if |s| == 0 then
    {s}
  else
    set p, i | p in CalculateAllPermutationsOf(s[1..]) && 0 <= i <= |p| 
            :: InsertAt(p, s[0], i)
}

function InsertAt<T>(s: seq<T>, x: T, i: nat): seq<T>
  requires i <= |s|
{
  s[..i] + [x] + s[i..]
}

For example, to compute the set of all permutations of the sequence s := [0,0,1]  , we first
compute the set of all unique permutations of the subsequence s[1..] == [0,1]  , which leads to
{[0,1], [1,0]} . Then we insert the first element s[0] == 0  into all the sequences of that set, at

every possible position. In this case, the resulting set is {[0,0,1], [0,1,0], [1,0,0]} , as
indicated below:

{
 [0] + [0,1], [0] + [0] + [1], [0,1] + [0], // inserting 0 into [0,1]
 [0] + [1,0], [1] + [0] + [0], [1,0] + [0]  // inserting 0 into [1,0]
}

During a coding interview, the focus would now typically shift to an analysis of the complexity of the
algorithm, before concluding with a presentation of an alternative, more efficient solution. Here, we
instead will concentrate on proving the correctness of the solution proposed above. In this case,
proving the proposal correct is arguably harder than coming up with it in the first place.

The Proof of Correctness
To establish correctness, we need to prove, for all sequences s , the equality of the two (infinite) sets
A(s) := iset p | p in CalculateAllPermutationsOf(s)  and B(s) :=
AllPermutationsOf(s) . That is, we have to establish the validity of two implications, for all
sequences p : i) if p  is in A(s)  , then it also is in B(s) ; and ii) if p  is in B(s)  , then it also is in
A(s) . We prove the two cases in separate lemmas CorrectnessImplicationOne(s, p)  and
CorrectnessImplicationTwo(s, p) , respectively:

The rest of this post will be dedicated to filling in the bodies of the lemmas
CorrectnessImplicationOne  and CorrectnessImplicationTwo .

Proof of CorrectnessImplicationOne

The first implication is arguably the more intuitive or simpler one to prove. It states that any sequence
p  in the set returned by CalculateAllPermutationsOf(s)  is indeed a permutation of s , that is,

it is an element of AllPermutationsOf(s) , which means it satisfies the predicate
IsPermutationOf(p, s) .

As is typical for Dafny, the proof of the lemma follows the structure of the function that it reasons
about. In this case, we mimic the function CalculateAllPermutationsOf  by mirroring its recursive
nature as a proof via induction. In particular, this means that we copy its case-split. In the case that s
is of length zero (the induction base), Dafny is able to prove the claim automatically:

In the case that s  is of length greater than zero (the induction step), we need to help Dafny a bit.
Assuming that p  is an element in CalculateAllPermutationsOf(s) , we aim to show that
multiset(p)  and multiset(s)  are equal. What information about p  do we have to derive such

an equality? A close inspection of the recursive call in CalculateAllPermutationsOf  indicates the
existence of a second sequence p’  that lives in CalculateAllPermutationsOf(s[1..])  and an
index i  of p’  such that p == InsertAt(p', s[0], i)  . To transform multiset(p) ==
multiset(InsertAt(p', s[0], i))  into something that’s closer to multiset(s) , we establish
the following additional lemma:

lemma MultisetAfterInsertAt<T>(s: seq<T>, x: T, i: nat)
  requires i <= |s|
  ensures multiset(InsertAt(s, x, i)) == multiset([x]) + multiset(s)
{
  calc == {
    multiset(InsertAt(s, x, i));
    multiset(s[..i] + [x] + s[i..]);
    multiset(s[..i]) + multiset([x]) + multiset(s[i..]);
    multiset([x]) + multiset(s[..i]) + multiset(s[i..]);
    multiset([x]) + multiset(s[..i] + s[i..]);
    { assert s[..i] + s[i..] == s; }
    multiset([x]) + multiset(s);
  }
}

The statement of MultisetAfterInsertAt  is relatively simple: the multiset of a sequence that is
obtained by inserting an element x  into a sequence s  is the multiset of s  joined with the multiset
of the sequence [x]  of length one. A proof of it can be obtained with a simple equational
calc ulation: we use the definition of InsertAt ; the fact that multiset(s + t) ==
multiset(s) + multiset(t)  for any two sequences s, t ; the commutativity of the join +  of
multisets; and the equality s[..i] + s[i..] == s .

To make progress in the induction step of our main proof, we call above lemma with the arguments
MultisetAfterInsertAt(p', s[0], i) . In consequence, we find that multiset(InsertAt(p',
s[0], i))  is equal to multiset([s[0]]) + multiset(p') . Since s[1..]  and  p’  are shorter
in length than s  and p  (which are of same length), respectively, we can use them in a recursive call
to CorrectnessImplicationOne(s[1..], p') , thus establishing the induction hypothesis: p' in
CalculateAllPermutationsOf(s[1..])  implies p' in AllPermutationsOf(s[1..])  . By
construction, p’  is indeed in CalculateAllPermutationsOf(s[1..]) , thus we can deduce
multiset(p') == multiset(s[1..])  from the definition of a permutation. The remaining steps of

the proof are now straightforward (and resemble the arguments in the proof of
MultisetAfterInsertAt ).

Proof of CorrectnessImplicationTwo

The second implication states that any permutation p  of s  is an element of
CalculateAllPermutationsOf(s) . Combined with the first implication, we thus know that
CalculateAllPermutationsOf(s)  doesn’t just a return a set that contains some of the

permutations of s , but in fact all of them.

As with the first implication, the structure of the proof for CorrectnessImplicationTwo  mimics the
definition of CalculateAllPermutationsOf . In the case that s  is of length zero (the induction
base), Dafny is again able to prove the claim automatically. In the case that s  is of length greater
than zero (the induction step), we aim to establish that p  is an element in
CalculateAllPermutationsOf(s) , if it is a permutation of s :

lemma CorrectnessImplicationTwo<T(!new)>(s: seq<T>, p: seq<T>)
  ensures p in CalculateAllPermutationsOf(s) <== p in AllPermutationsOf(s)
{
  if |s| == 0 {
    // induction base, no proof hints needed
  } else {
    // induction step
    if p in AllPermutationsOf(s) {
      assert p in CalculateAllPermutationsOf(s) by {
        var i := FirstOccurrence(p, s[0]);
        var p' := DeleteAt(p, i);
        assert p' in CalculateAllPermutationsOf(s[1..]) by {
          assert p' in AllPermutationsOf(s[1..]) by {
            PermutationBeforeAndAfterDeletionAt(p, s, i, 0);
          }
          CorrectnessImplicationTwo(s[1..], p'); // induction hypothesis
        }
        assert p == InsertAt(p', s[0], i) by {
          InsertAfterDeleteAt(p, i);
        }
      }
    }
  }
}

An inspection of the definition of CalculateAllPermutationsOf  shows that this means we have to
construct a permutation p'  that is in CalculateAllPermutationsOf(s[1..])  and some index
i  of p'  , such that p == InsertAt(p’, s[0], i) . How do we find p'  and i ? Intuitively, the

idea is as follows: we define i  as the index of the first occurrence of s[0]  in p  (which we know
exists, since p , as permutation, contains the same elements as s ) and p'  as the sequence that
one obtains when deleting the i -th element of p . To formalise this idea, we introduce the following
two functions:

function FirstOccurrence<T(==)>(p: seq<T>, x: T): (i: nat)
  requires x in multiset(p)
  ensures i < |p|
  ensures p[i] == x
{
  if p[0] == x then
    0
  else
    FirstOccurrence(p[1..], x) + 1
}

function DeleteAt<T>(s: seq<T>, i: nat): seq<T>
  requires i < |s|
{
  s[..i] + s[i+1..]
}

To conclude the proof, it remains to establish that i) p' in
CalculateAllPermutationsOf(s[1..])  and ii) p == InsertAt(p’, s[0], i) .

For i), the idea is to apply the induction hypothesis CorrectnessImplicationTwo(s[1..], p') ,
which yields the desired result if p'  is a permutation of s[1..] . Since p  was a permutation of s ,
and p'  was obtained from p  by deleting its first element, the statement is intuitively true. Formally,
we establish it with the call PermutationBeforeAndAfterDeletionAt(p, s, i, 0)  to the
following, slightly more general, lemma:

The proof of PermutationBeforeAndAfterDeletionAt  is mostly a direct consequence of the
involved definitions, and otherwise uses properties of multiset  that we’ve encountered before.

To establish ii), that is, the equality p == InsertAt(p’, s[0], i) , we recall that by construction
p' == DeleteAt(p, i) . Substituting p’  for its definition and using the postcondition p[i] ==
s[0]  of FirstOccurrence  thus leads us to the following lemma, which states that deleting an
element of a sequence, before inserting it again at the same position, leaves the initial sequence
unchanged:

lemma InsertAfterDeleteAt<T>(s: seq<T>, i: nat)
  requires i < |s|
  ensures s == InsertAt(DeleteAt(s, i), s[i], i)
{}

This concludes our proof!

Conclusion
Using Dafny, we were able to i) translate the informal task of writing a function that returns the set of
all permutations of a given sequence into a formal, mathematical specification; ii) implement a
potential solution to the problem — in this case, in a purely functional style; and iii) formally verify, with
a mathematical proof, that the proposed solution is correct. Along the way, we encountered Dafny’s
seq , set , iset , and multiset  types, discussed type parameters, proved theorems by

induction, reasoned equationally with the calc  statement, and made heavy use of Dafny’s capability
to subdivide complex lemmas into smaller, feasible components. I hope you enjoyed the ride. The full
Dafny source code of this post is available here.
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lemma Correctness<T(!new)>(s: seq<T>)
  ensures (iset p | p in CalculateAllPermutationsOf(s)) == AllPermutationsOf(s)
{
  assert (iset p | p in CalculateAllPermutationsOf(s)) == AllPermutationsOf(s) by {
    assert forall p :: p in CalculateAllPermutationsOf(s) <==> p in AllPermutationsOf(s) by {
      forall p
        ensures p in CalculateAllPermutationsOf(s) <==> p in AllPermutationsOf(s) 
        {
          CorrectnessImplicationOne(s, p);
          CorrectnessImplicationTwo(s, p);
        }
    }
  }
}

lemma CorrectnessImplicationOne<T(!new)>(s: seq<T>, p: seq<T>)
  ensures p in CalculateAllPermutationsOf(s) ==> p in AllPermutationsOf(s)
{...}

lemma CorrectnessImplicationTwo<T(!new)>(s: seq<T>, p: seq<T>)
  ensures p in CalculateAllPermutationsOf(s) <== p in AllPermutationsOf(s)
{...}

lemma CorrectnessImplicationOne<T(!new)>(s: seq<T>, p: seq<T>)
  ensures p in CalculateAllPermutationsOf(s) ==> p in AllPermutationsOf(s)
{
  if |s| == 0 {
    // induction base, no proof hints needed
  } else {
    // induction step
    if p in CalculateAllPermutationsOf(s) {
      assert p in AllPermutationsOf(s) by {
        assert IsPermutationOf(p, s) by {
          var p', i :| p' in CalculateAllPermutationsOf(s[1..]) && 0 <= i <= |p'| && p == InsertAt(p', s[0], i);
          calc == {
            multiset(p);
            multiset(InsertAt(p', s[0], i));
            { MultisetAfterInsertAt(p', s[0], i); }
            multiset([s[0]]) + multiset(p');
            { CorrectnessImplicationOne(s[1..], p'); } // induction hypothesis
            multiset([s[0]]) + multiset(s[1..]);
            multiset([s[0]] + s[1..]);
            { assert [s[0]] + s[1..] == s; }
            multiset(s);
          }
        }
      }
    }
  }
}

lemma PermutationBeforeAndAfterDeletionAt<T>(p: seq<T>, s: seq<T>, i: nat, j: nat)
  requires IsPermutationOf(p, s)
  requires i < |p|
  requires j < |s|
  requires p[i] == s[j]
  ensures IsPermutationOf(DeleteAt(p, i), DeleteAt(s, j))
{
  assert IsPermutationOf(DeleteAt(p, i), DeleteAt(s, j)) by {
    calc == {
      multiset(DeleteAt(p, i));
      multiset(p[..i] + p[i+1..]);
      multiset(p[..i]) + multiset(p[i+1..]);
      multiset(p[..i]) + multiset([p[i]]) + multiset(p[i+1..]) - multiset([p[i]]);
      multiset(p[..i] + [p[i]] + p[i+1..]) - multiset([p[i]]);
      { assert p[..i] + [p[i]] + p[i+1..] == p; }
      multiset(p) - multiset([p[i]]);
      multiset(s) - multiset([s[j]]);
      { assert s[..j] + [s[j]] + s[j+1..] == s; }
      multiset(s[..j] + [s[j]] + s[j+1..]) - multiset([s[j]]);
      multiset(s[..j]) + multiset([s[j]]) + multiset(s[j+1..]) - multiset([s[j]]);
      multiset(s[..j]) + multiset(s[j+1..]);
      multiset(s[..j] + s[j+1..]);
      multiset(DeleteAt(s, j));
    }
  }
}
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